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Preface to the First Edition

I had taught courses in applied ecology, population dynamics, and population 
management for many years and, like many of my colleagues, had grown accus-
tomed to the blank stares of my students as we wove our way through the confused 
semantics and intricate concepts of traditional ecology and wrestled with elaborate 
mathematical arguments. I searched in vain for a central unifying concept on which 
to organize a theory of population ecology until, 30 years ago, I read a small book 
of essays edited by John Milsum of McGill University entitled Positive Feedback – 
A General Systems Approach to Positive/Negative Feedback and Mutual Causality. 
Stimulated by the articles in this book, particularly those written by Milsum, 
M. Maruyama, and A. Rapoport, I began to structure my lectures around the central 
ideas of general systems theory. I first used this approach in my graduate courses 
in population dynamics and population management and then, encouraged by the 
results, in my undergraduate course in forest entomology and to teach population 
dynamics to practicing foresters. Almost without exception, my students found the 
general systems approach intuitively reasonable and easier to understand than traditional 
teaching methods. Even undergraduates seem to grasp the fundamental principles 
quite rapidly and, more important, to realize that a general understanding of population 
systems is an essential part of their education. These reactions by my students, and 
their continued encouragement, led me to write this book.

This book is concerned with the general principles and theories of population 
ecology. I have attempted to derive these from a basic understanding of how general 
systems behave together with observations of the behavior of real population sys-
tems. Unlike some of my colleagues, I am convinced that the rules governing the 
dynamics of populations are relatively simple, and that the rich behavior we 
observe in nature is a consequence of the structure of the system rather than of the 
complexity of the underlying rules. This is aptly demonstrated by the “Game of 
Life” discussed in Chapter 1. In this chapter I have tried to provide a basic frame-
work for analyzing the structure and dynamics of systems in general, using a sim-
plified interpretation of general systems theory. From this perspective we then 
examine the dynamic behavior of single-species populations in Chapter 2 and 
develop an elementary feedback model of the population system. In Chapter 3 this 
single-species model is refined and generalized by examining the mechanisms of 
population regulation, and graphical procedures are developed for evaluating the 
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behavior of populations inhabiting variable environments. These graphical methods 
are then applied to the analysis of interactions between two species, including 
mutualistic, competitive, and predator-prey systems, in Chapter 4. Then, in Chapter 
5, we extend our dimensions to examine spatial effects on population behavior, and 
in Chapter 6 we take a brief look at communities composed of many interacting 
species.

Because I am convinced that all of us in this overcrowded world should be familiar 
with the basic concepts of population dynamics, I have attempted to write this book 
in a way that is comprehensible to the undergraduate student and layman, as well 
as being stimulating to the graduate student, professional population manager, and 
teacher. For this reason I have tried to avoid much of the ecological jargon and the 
complicated mathematics, which abound in the literature. The mathematics I have 
used is mostly elementary algebra, though more complicated arguments are presented, 
for those who wish to delve more deeply, in notes at the end of each chapter.

Although this book is of a theoretical nature, it is written with the applied ecologist 
and population manager in mind. At heart I am an applied ecologist, but I am also 
convinced that a firm theoretical background is essential if we are to make sound 
decisions concerning the management of our renewable resources and to anticipate 
the subtle consequences of these decisions. Managers frequently have to deal with 
population systems that are undefined, or only partly defined, by empirical data. Under 
these conditions they must rely on an intuitive understanding of the processes and 
interactions of the system. Population theory forms a basic framework on which 
this understanding can be built with the help of experience and an inquiring mind. 
This is not to say that a detailed knowledge of the properties and behavior of specific 
population systems, as well as the tactical tools available to the manager, are not 
equally important to the applied ecologist. Ideally this book should be used as a 
supplement to a specific text in courses aimed at the management of forest, range, 
wildlife, fish, or pest populations.

The theme throughout this book is populations interacting with their environments, 
and its main message is that populations of plants and animals can be intelligently 
managed if the general rules governing their behavior are clearly understood. If 
there is some urgency in my message it is because of my concern for this overcrowded 
planet and for our threatened renewable resources. Should this book contribute to 
our understanding of the immense problems we face, my time will have been well 
spent.

A. A. B. 
Pullman
Washington
February 1980
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Preface to the Second Edition

In the early 1980’s, when I was at the beginning of my carrier of a theoretical ecologist, 
I came across a blue book called Population Systems. The intuitive approach 
adopted here was clearly distinct from all other books on mathematical modeling 
of population dynamics available at that time. Instead of masses of equations, followed 
by calculation of equilibria and their stability, the topic was explained here using 
drawings of isoclines and reproduction planes and the reader was asked to use visu-
alization (and sometimes even something like intuition) to predict the behavior of 
complex biological systems. Despite my previous training in mathematics, I was 
amazed by the amount of practical interpretations, which could be derived from the 
models by means of this purely “visual” approach. I began to understand that math-
ematicians, by using explicit forms of their equations, often indulge themselves in 
complicated calculations, which then obscure the biologically interesting predictions 
of their models.

I soon found I was not alone. Many of my colleagues oriented in theoretical 
ecology, which had been trained as biologists (including Tony Dixon, Vojta Jarošík 
and many other people mentioned below in the Acknowledgements), found this 
inconspicuous book very appealing for exactly the same reason – intuitive approach 
to the problem. The book, however, did remain alone for more than 25 years. At 
least, I am not aware of any other book using the reproduction plane approach to 
such an extent, as done in Population Systems. Thus I was not surprised, when Alan 
Berryman was invited to publish its second edition. And I was very much honored 
and excited, when he agreed to accept me as a co-author, who would contribute 
negligibly by helping him with the revision.

Thanks to the unique “reproduction plane” approach, the main text did not 
require any dramatic changes, as most of it still stands – even more than 25 years 
after is has first seen the light of the world! Admittedly, some expressions, like 
“if you have a programmable pocket calculator available”, became rather obso-
lete. We decided to accompany the book with a CD, where the reader can find lots 
of useful EXCEL files, illustrating the statements made in the main text and 
showing some examples of continuous systems. We refer to this disk, whenever 
appropriate. The introductory file appears automatically after the CD has been 
put into the drive – and the student is then instructed about how to use the other 
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files. We also added a few new references and examples, which were published 
since the first edition, but are aware that we certainly did not include all those 
worth citing.

We hope that this slightly updated version of the classic book might find its 
place in the fast-growing array of literature on mathematical ecology.

P. K. 
České Budějovice
August 2007
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Part I
Population Systems

Populations are made up of individual organisms, which interact and communicate 
with each other as they pursue their normal lives. For example, individuals mate, 
compete for scarce resources, and cooperate to capture prey or escape being eaten. 
As a result of these interactions individuals reproduce, move and die and these 
processes cause the population as a whole to behave in certain ways - populations 
grow, decline, or remain steady.

Any system you wish to consider, a television set or an automobile, is basically 
composed of a set of interacting parts that together produce patterns of behavior, 
which are characteristic of the system. This behavior is determined by the rules of 
interaction, and the overall structure of the interaction network. Populations, there-
fore, can be thought of as particular kinds of systems with their own rules and 
structure, which – nevertheless - obey certain general system laws.

In the first chapter of this book we will take a brief excursion into the theory of 
dynamic systems in order to understand the properties and behavior of systems in 
general. Then these concepts will be applied to the analysis of single-species popu-
lations. In Chapter 2 a very simple model is developed from observations of the 
behavior of natural populations, which will help us to understand the fundamental 
rules of population growth. Then in Chapter 3 a more detailed model of the popula-
tion system is created, along with a methodology for analyzing the behavior of 
dynamic population systems inhabiting variable environments.



Chapter 1
A Brief Look at Systems in General

The theory of dynamical systems originated in the engineering sciences as a way of 
describing and designing complex mechanical and electronic systems. It has since 
found increasing use by military, economic, and industrial strategists, as well as 
biologists, as a way of gaining insight into the structure and function of complex 
systems. In this first chapter we outline some of the elementary concepts and princi-
ples of dynamic systems theory as a prelude to our investigation of population systems. 
We have tried to avoid engineering jargon as much as possible and have freely modi-
fied some of the more rigorous concepts to suit the particular needs of population 
ecology, hopefully without losing the original intent. Our aim is to use the theory to 
gain a better understanding of population ecology and management and, thus, we 
have glossed over or ignored much of the formality and detail (references to more 
technical treatments are given in Note 1.1 at the end of this chapter).

1.1. What is a System?

A system is an assemblage of objects or components which interact, intercommu-
nicate, or are dependent on each other so as to operate as an integrated whole. For 
example, the human body is a system composed of many interacting and interde-
pendent organs, as is a television set made up of electronic parts and an automobile 
with its mechanical and electrical components. Now you may have realized that 
these systems are themselves composed of a number of discrete subsystems – your 
body has a nervous system, a circulatory system, a digestive system, and your car 
has a fuel system, an ignition system, and so on. The definition of a particular sys-
tem, therefore, depends as much on the interest and perspective of the individual 
observer as on any intrinsic property of the thing being observed. The system exists 
in the eye of the beholder, so that the TV set is the system to the repairman while 
the TV network is the executive’s system. The cell is to the microbiologist what the 
organ is to the physiologist, the organism to the behaviorist, and the population to 
the ecologist.

Although we can view things with different degrees of fineness, or resolution, 
no view is completely independent of the other. The organ can no more function 
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4 1 A Brief Look at Systems in General

without its organism than can an automobile without its ignition system or a TV set 
without an electrical system. Thus, most systems are, in truth, only parts of larger 
systems, which are themselves parts of larger systems, and so on ad infinitum 
(Figure 1.1).

We can approach the problem of resolution by allowing ourselves the freedom 
to define a system according to our particular interest, and to treat the larger uni-
verse, of which our system is part, as an external environment. This environment 
supplies all the materials, energy, and information needed to make the system 
work. Hence, the human body is supplied with food, oxygen, water, shelter, and 
contact with other humans by its environment. Similarly, the TV set runs on its 
external source of electricity and radio waves and the automobile on gasoline, oil, 
water, and oxygen. All these resources in the environment are considered to be 
inputs into the system. Inputs may vary with time (then they are called variables) 
or remain invariant with time (then they are called constants), but whatever is the 
case, they control or activate the components of the system and enable it to 
function.

Environmental inputs may sometimes disrupt or even destroy the system. Most 
mechanical and biological systems have certain design tolerances, which cannot 
be exceeded without seriously affecting their operation. Overloads of otherwise 
essential resources may have disastrous effects - too much electricity blows the 
television set, too much gasoline floods the carburetor, too much water drowns the 

Fig. 1.1 A hierarchy of systems



animal - and catastrophic events in the environment, such as earthquakes, hurri-
canes, and volcanic eruptions, can seriously disrupt or destroy the natural ecosys-
tem. In other words, there are certain environmental inputs, which are usually very 
rare, that the system is not designed to deal with. When these rare events occur the 
system can be seriously disrupted or even destroyed.

Systems may also contribute materials, energy, or information to their environ-
ments. For instance, humans exude feces, urine, carbon dioxide, heat, and knowl-
edge, while their automobiles emit sulfur dioxide, carbon monoxide, and other 
gases. These contributions from a system to its environment are called, reasona-
bly enough, outputs. On occasion outputs can have serious effects on the environ-
ment, which may even threaten the system that produced them. For example, 
waste products from humans and their agricultural, industrial, and transportation 
systems pollute the environment and, in large quantities, may make it unfit for 
human existence.

Our basic ideas concerning a system and its environment are summarized in 
Figure 1.2. In this diagram we have separated the system from its environment for 
reasons of clarity. In reality, of course, the system operates within its environment. 
We consider the subject system to be composed of a set of interacting or interde-
pendent parts, which are delineated by a boundary defining that particular system. 
The larger universal system (or systems) within which the subject system exists is 
defined as the environment. Inputs into the system from its environment supply the 
materials, energy, and information needed to make it run or which may disrupt or 
destroy it. The system may produce its own materials, energy, or information out-
puts, which flow back into the environment and may feed back to affect the subject 
population itself.

Fig. 1.2 A system composed of five components, S’s, two of which are affected by inputs from 
the environment, I’s, and two of which produce outputs into the environment, O’s

1.1. What is a System?  5



6 1 A Brief Look at Systems in General

1.2. The State of a System

At a particular instant in time a system can be viewed as a static assemblage of 
parts, much as a photograph is a static representation of a moving object. The sys-
tem, with all animation suspended in space and time, can be described accurately 
because all the moving parts are frozen in place. Such a description characterizing 
a system at a given instant in time is called a state description.

Although the state of a system is described by the condition of its component 
parts, some of them may not change appreciably over time and, hence, are not par-
ticularly interesting from a dynamic point of view. For instance, describing a person 
as having a head, torso, arms, legs, etc., is not very meaningful because most of us 
have them, and their general nature does not change much from time to time or 
place to place. However, describing a person as being in love, in poor health, or in 
a hurry is of more interest because these conditions can vary considerably. Thus, 
we commonly use expressions such as “state of mind” and “state of shock” to char-
acterize particular conditions that may change drastically in the next moment. 
Components of the system that change in time are called variables, and those that 
we use to characterize the state of the system are known as state variables.

Most complex systems possess hundreds or even thousands of state variables 
and it is usually impractical, or even impossible, to describe the condition of them 
all. The art of diagnosis, then, is deciding which of the state variables should be 
used to describe the state of a particular system. For example, the general state of 
your health can be characterized by measuring your blood pressure and by analyz-
ing a sample of blood and urine. Thus, state variables are usually chosen because 
they are the most sensitive indicators of the changes that interest the analyst.

1.3. Dynamical Systems

When the state variables of a system remain relatively constant for a long period of 
time, the system is considered to be static, while if they change rapidly the system 
is said to be dynamic. Although many real-life systems change continuously, we 
often represent their dynamic behavior by a series of state descriptions made at a 
number of separate instants in time. An analogy is a movie, which represents a 
continuously changing scene with a large number of separate static photographs 
taken at very short intervals of time. When the movie is shown it gives the illusion 
of continuous movement.

Since the dynamics of a system can be depicted by its static portrait taken at 
discrete instants in time, its change in state is the difference in the condition of its 
state variables at the beginning and end of one time interval. There are three possi-
ble qualitative ways in which a state variable may change: It may increase (+), it 
may decrease (−), or it may remain unchanged (0). The way in which a particular 
variable changes, and the magnitude of the change, is determined by its interaction 



with other state variables, with inputs from the environment, or with itself (Figure 1.3). 
Therefore, interactions between state variables and inputs control the dynamic 
behavior of the system.

1.4. System Diagrams

There are two basic conventions for representing the relationships between the vari-
ables of a system: flow graphs and block diagrams. In the former, variables are 
represented as circles, or nodes, and the flow of matter, energy, or information 
between them by arrows (Figure 1.3). Flow graphs are particularly useful when the 
flows are simple linear functions of their variables, and when we are dealing with 
systems where the variables are in equilibrium; that is, they remain more or less 
constant with time. We will use flow graphs in only one chapter of this book, when 
considering communities of organisms that are near to equilibrium (Chapter 6). In 
the remainder of the book we will use the block diagram convention because it is 
generally more flexible and easier to apply to population systems.

The basic components of block diagrams are boxes, which represent processes or 
mechanisms, and arrows, which represent the variables that operate the processes 
(Figure 1.4). Variables that enter a box stimulate the process, which gives rise to a 
response in the form of a variable leaving the box. Thus, arrows entering boxes rep-
resent stimulus variables, whilst those leaving boxes represent response variables. 
These terms are used whether the variables are state, input, or output variables.

We can view the processes or mechanisms of the system as subsystems that have 
not been broken down into their component parts. For example, the automobile’s 
fuel system, ignition system, and engine could be included in a single box, with 
stimulus provided by pressure on the accelerator, and response measured by the 
velocity of the vehicle. However, we could just as easily divide this box into several 
separate mechanisms (boxes) - engine, carburetor, distributor, etc. - each with its 

Fig. 1.3 Interactions that may affect a change in the state of a variable; the state variable S
2
 is 

influenced by another state variable, S
1
, by an environmental input, I

1
, and by itself

1.4. System Diagrams 7



8 1 A Brief Look at Systems in General

own stimulus and response. Thus, whenever we represent a complicated mecha-
nism as a box we are confessing a lack of interest in or knowledge of the details of 
that mechanism and displaying more interest in the relationship between the stimu-
lus and response variables. Because the details of the internal workings of the box 
are suppressed, they are frequently referred to as “black boxes” and are often 
described by rather simple empirical equations. For example, we can describe the 
process causing the automobile’s velocity to change by measuring its velocity at 
several different accelerator depressions and then drawing a line through these 
sample points (Figure 1.5). This simple relationship substitutes for the complex 
real-life mechanisms of engine, carburetor, etc., and reduces the detail considera-
bly. Reductions of this sort are often essential when we have to deal with extremely 
complex systems.

Mechanisms or processes may cause the value of the response variable to 
increase in direct relationship to inputs from the stimulus variable. This is called a 
positive process (+) and is illustrated by Figure 1.5; that is, increased pressure on 
the accelerator results in increased velocity and vice versa. In contrast, when the 
response variable changes in inverse relationship to the stimulus we have a negative 
process (−). For instance, increased pressure on the brake causes a decrease in 
velocity. Of course it is possible for a process to produce a constant response from 
a changing stimulus; the voltage regulator produces a constant voltage output from 
a variable voltage coming from the alternator. As we shall see later, such processes 
deserve our special attention.

The portrayal of a particular real-life system as a series of processes or mecha-
nisms (boxes) linked together by variables (arrows) to produce a block diagram 
becomes our abstract model of the system we are investigating. The model is a 
simplification of the real system, with the fine details condensed into boxes and the 
larger enveloping systems relegated to the environment. The overall dynamic 
behavior of this abstract system is driven by inputs from the environment and its 
component processes, and this behavior is measured by changes in the state varia-
bles and the output variables (the arrows). The overall qualitative dynamics of the 

Fig. 1.5 An empirically defined process or “black box”

Fig. 1.4 A generalized block diagram



system can be determined by multiplying the signs of the component processes. For 
example, in the model of an automobile (Figure 1.6), pressure on the accelerator 
directly stimulates gasoline flow (+), which then directly affects the speed of the 
vehicle (+). The product of these two positive mechanisms is an overall positive 
effect of accelerator on velocity: (+)(+) = (+). In contrast, pressure on the brake 
pedal has an overall negative effect on velocity because we have the product of a 
positive and a negative mechanism: (+)(−) = (−).

1.5. Feedback Control

The systems we have considered so far are rather uninteresting because their 
dynamic behavior is completely determined by inputs from their environments. In 
our automobile example (Figure 1.6) the engine and braking systems are simply 
mechanisms for executing the orders of an environmental dictator (you). Systems 
become much more interesting and meaningful when they contain a degree of self-
determination or internal control. A system may affect its own behavior when the 
output from a particular process feeds back to become the input for that same proc-
ess at some time in the future, creating what is called a feedback loop. For example, 
if we include a driver in our automobile system then we will create a feedback loop 
composed of driver, engine, and speedometer (Figure 1.7). The driver (you) is now 
considered as a component of the system. You operate the vehicle by comparing 
your speed, provided by the speedometer, with the desired speed, obtained as an 
input from the environment (e.g., the posted speed limit). When the estimated speed 
is less than the desired speed, you increase pressure on the accelerator, and vice 
versa. Since you react in inverse proportion to the compared variables, you can be 
considered as a negative mechanism. Thus the feedback loop created by including 
the driver in the system has an overall negative effect because the product of the 
component processes is negative: (+)(+)(−) = (−). Negative feedback loops have 
very important effects on the dynamic behavior of a system because they tend to 
produce constant, or at least consistent, responses in the output variable(s). In other 

Fig. 1.6 Model of an automobile’s power and braking systems
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words, they tend to control the behavior of the output variable(s) and to iron out any 
disturbances to the desired system behavior. These disturbances are compensated 
for by internal adjustments of the various mechanisms. Let us use the automobile 
model to demonstrate the important attributes of systems with internal feedback 
control (Figure 1.7). Suppose that you are cruising at your desired speed when an 
outside disturbance, such as a downgrade, causes the speed of the car to increase. 
Looking at the speedometer, you realize that your estimated speed is greater than 
the speed limit and, acting as a negative process to oppose this divergence from 
your desired speed, you reduce pressure on the accelerator. The result of this nega-
tive feedback process is that the vehicle remains at, or close to, the desired speed at 
all times - its behavior is controlled. Negative feedback processes are found in most 
complex man-made and natural systems. The essential component is a mechanism 
that compares the actual behavior of the system with what is desired - the comparator. 
Familiar examples of comparators are governors, thermostats, autopilots, and the 
like. The analogue of the comparator is sometimes difficult to find in biological 
systems, particularly populations, communities, or ecosystems: What is the desired 
population density of a given species, say Homo sapiens? However, we will see 
later that negative feedback often occurs in populations and communities composed 
of living organisms, and that a comparator may not be involved in such systems.

The antipathy of negative feedback is positive feedback, which connotes lack of 
control, or the “vicious cycle” illustrated by the arms race in Figure 1.8. In this 
system all the processes are positive and the output, in terms of weapons deploy-
ment, tends to escalate with time. For example, if country A starts the “vicious 
cycle” by deploying a few offensive weapons, it is perceived as a threat by country 
B which then deploys weapons of its own, which is then perceived as a threat by A, 
and so on. Positive feedback, therefore, tends to amplify an initial movement or 
disturbance in the system’s output. Although positive feedback was responsible for 
continual growth in weapons deployment in this example, it can also work in the 

Fig. 1.7 Feedback control of an automobile



opposite way and cause the system to decay continuously. For instance, if one 
country decreased its deployment of offensive weapons, then, according to the sys-
tem we have depicted, the other country would be less threatened and would 
decrease its deployment, and so on until no more weapons existed. Once again, a 
movement in one direction is continuously amplified in the same direction as the 
initial movement. Because the positive feedback vicious cycle has to be initiated by 
someone, the initial disturbance is often cited as the cause of the problem, with 
cries of “they started it.” However, the initial move cannot be amplified in the 
absence of a complete positive feedback loop and, if the loop exists, something will 
eventually set it off. It takes at least two to fight and two to make love and both are 
positive feedback processes. Thus, the structure of the loop is of more significance 
in the behavior of the system than the original move, which sets it off.

We can also see from Figure 1.8 how easily a positive loop can be changed into 
a negative one. For example, if one country decided to respond to a threat by reduc-
ing its arms deployment, this would change the sign in one of its boxes to negative 
and the total system to negative feedback, (+)(+)(+)(−) = (−). An increased threat 
from its neighbor would now result in decreased weapons deployment, which 
would lower the threat to the other country. According to our diagram the other 
country would then reduce its arms deployment, lowering the threat to its neighbor. 
However, a lowered threat would cause this country to increase its weapons 
deployment and we can see that the system will remain at, or oscillate around, its 
original position.

In summary, then, positive feedback is a self-enhancing process in comparison to 
the self-controlling properties of negative feedback. In systems dominated by posi-
tive feedback we should expect very large effects building up from very small initial 
causes. Although some of these self-enhancing processes may be self-destructive, as 
implied by the terms vicious cycle, arms race, inflation spiral, population explosion, 
and the like, they need not necessarily be so. The agricultural revolution, knowledge 
explosion, and organic evolution are also positive feedback processes.

Fig. 1.8 The “arms race,” a positive feedback system
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Feedback loops may pass through complicated pathways and many mechanisms 
before they return to their start. However, we can discover whether the total loop is 
positive or negative by applying the multiplication rule. Positive feedback will 
occur whenever all serially connected boxes in a loop are positive, or when an even 
number of them is negative (remember that (−)(−) = (+)). On the other hand, nega-
tive feedback only occurs when there is an odd number of negative processes in a 
loop. Feedback loops in a system may arise through design or circumstance. For 
example, the engineer designs the automobile to be controlled by negative feedback 
between driver and vehicle. On the other hand, positive feedback in the arms race 
was created, with no purpose implied, by the mutual interaction between two rival 
systems, and the circumstances of their interaction.

1.6. The Stability of Systems

A system is considered to be stable if its state variable(s) tend to return to or towards 
some particular steady state following an environmental disturbance. For this rea-
son, stable systems are seen to persist over time in a state of balance, or equilibrium, 
with their environments. Thus television sets and automobiles perform consistently 
well because their designers were concerned with their properties of stability.

The concept of stability is extremely important to our understanding of dynamic 
systems and, perhaps, we can illustrate it with the example of a ball resting on dif-
ferent landscapes (Figure 1.9). In the first diagram (Figure 1.9A) the ball resting in 
the valley is in a stable state because it rolls back to the bottom of the valley fol-
lowing a disturbance. On the other hand, the ball on the mountaintop is in an unsta-
ble state because, if it is moved, it will continue to roll away from its original 
position (Figure 1.9B). The ball on the flat surface is said to be neutrally stable 
because it will remain wherever it is placed (Figure 1.9C).

At this point we need to distinguish between two kinds of stability. Systems are 
said to be globally stable if they return to their equilibrium position following a 
displacement of any magnitude, whereas those that only return if the displacement 
is relatively small are said to be locally stable in the neighborhood of the equilib-
rium point. For example, if the valley in Figure 1.9A was infinitely large, the ball 
would always return to equilibrium no matter how far it was moved up the walls of 
the valley. In this case the system would exhibit global stability. However, it might 
be more usual to find the landscape consisting of peaks and valleys, such as that 
shown in Figure 1.9D, in which case the system is only locally stable to a certain 
range of disturbances. When we make the landscape even more complicated we 
may find several locally stable equilibrium positions separated by unstable peaks 
(Figure 1.9E). These peaks, in actuality, define thresholds that separate the domains 
of different equilibria. For example, the ball in Figure 1.9E is sitting on the unstable 
threshold separating the domains of two equilibria, for a slight push one way or the 
other will result in its movement to one of these two positions. These concepts of 
local stability, multiple equilibria, and thresholds will prove to be very important 
later on in Chapters 3 and 4.



As we might expect, the stability properties of a system are determined, to a 
large extent, by its feedback structure. When positive feedback loops dominate we 
will usually observe unstable growth or decay behavior and, sometimes, unstable 
thresholds. On the other hand, negative feedback loops will tend to control, or regu-
late, the system so that it performs in a consistent manner. They define the equilib-
rium structure of the system. Although stable systems are usually dominated by 
negative feedback control, we will see below that negative feedback is not a suffi-
cient condition for stability.

The dynamic stability of systems governed by negative feedback can be evalu-
ated by observing the behavior of the state variable(s) following a disturbance of 
the system from its steady state, under the condition that all environmental inputs 
remain constant. This is usually referred to as the system’s steady-state behavior. 
Let us examine the steady-state behavior of the automobile-driver system illustrated 
in Figure 1.7. It will be in steady-state equilibrium when the vehicle is traveling at 
the desired reference speed, say 55 miles per hour. If an environmental disturbance 
causes a change in the vehicle’s speed, the driver is notified by the speedometer and 
compensates for the disturbance by adjusting his pressure on the accelerator. 
A detailed examination of this process shows that it occurs in a series of steps 
through time (Figure 1.10). Suppose the driver notices an increase in his speed at 
time t

0
 and responds by lifting his foot from the accelerator. The automobile will 

slow down and at time t
1
 the driver will observe that the reference speed has been 

reached. He will then increase pressure on the accelerator in an attempt to maintain 
the desired speed. However, in the instant of time required to carry out these mental 
calculations, and for his reaction to be transmitted to the engine, the vehicle’s speed 
will have dropped below 55 miles per hour. What we have here is a time delay between 

Fig. 1.9 Stable (A), unstable (B), and neutrally stable (C) landscapes, and locally stable land-
scapes with one (D) and two (E) equilibrium positions
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the instant that the driver sensed that the vehicle had reached the desired speed and 
the time at which the engine responded with additional power. This time delay 
caused the actual speed to undershoot the desired speed. We might also expect that, 
after more power is given to the engine, the speed may overshoot the desired condi-
tion for the same reason. Thus, the speed of the car will tend to oscillate around its 
reference point, or equilibrium position. If the driver is able to improve his control 
with time, these oscillations will become smaller and smaller until the vehicle 
eventually attains the desired speed (Figure 1.10). If we examine this figure more 
carefully we will see that the size of the oscillations, given a constant time delay, 
depends on the angle of approach to the equilibrium line (i.e., θ in Fig. 1.10). This 
angle is a measure of the rate at which the car approaches the reference speed. We 
can see that, if this rate of approach decreases with time, then the oscillations will 
dampen out. This kind of steady-state behavior is usually called an approach to 
equilibrium with damped oscillations, and the system is said to be damped stable.

Two very important concepts have been introduced in the above paragraphs. The 
first is that delays in the negative feedback response may cause the system to over-
shoot its equilibrium position and exhibit oscillatory behavior. The second is that 
the degree of overshoot, and therefore the amplitude of the oscillations, is directly 
proportional to the length of the time delay and the rate at which the system 
approaches equilibrium.

The system that exhibits damped oscillations is, by definition, stable because it 
eventually returns to its steady state position. However, if the time delay is too long, or 
the rate of approach too fast, then the system can become unstable. For example, con-
sider the case where the driver overreacts to a slight increase in speed by jamming on 
his brakes, causing the car to decelerate rapidly. His speed will undoubtedly under-
shoot the reference speed by a large margin (Figure 1.11). If the driver then flattens the 
accelerator in an attempt to regain his desired speed as quickly as possible, then an 
even larger overshoot may result. Continued overcompensation by the driver will cause 

Fig. 1.10 Steady-state response of a vehicle’s speed as it returns to equilibrium with damped 
oscillations after a displacement from equilibrium



the oscillations to increase in amplitude and he will lose control of the car. The system, 
of course, is now unstable and the condition is usually referred to as oscillatory insta-
bility to distinguish it from the type of instability characteristic of positive feedback 
loops. Oscillatory instability results because the negative feedback processes overcom-
pensate for the displacement from equilibrium caused by the initial disturbance. 
Figures 1.10 and 1.11 show that the degree of control that a driver has over his vehicle 
depends on the fineness with which he regulates acceleration and braking, as well as 
on his reaction time. Hence the advice of the driving instructor to use firm but gentle 
pressure on the pedals, and the admonishment against drinking while driving which 
dulls the brain and increases the time delay in the negative feedback response.

It is important to realize that, although negative feedback structures are designed 
to maintain a system in equilibrium, continuous environmental disturbances may 
prevent it from ever attaining the precise equilibrium point. No matter how finely 
you control your automobile it rarely remains for long at the precise speed you want 
because external conditions of wind, terrain, etc., change continuously. Hence, 
although equilibrium speeds certainly exist in the mind of the driver, they almost 
always deviate to some extent from this abstract reference point. Likewise, although 
we will rarely observe biological systems in precise equilibrium, we will frequently 
observe their tendency to return toward a particular state following environmental 
disturbances. Such tendencies should remind us that negative feedback processes 
are in operation.

1.7. Anticipatory Feedforward

We have seen that negative feedback loops can become unstable if the transfer of 
information, material, or energy through the loop takes a long time. The time delay 
can be reduced if the system contains a mechanism for anticipating, or predicting, 

Fig. 1.11 The results of overcompensation for a disturbance in the speed of a vehicle
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its future behavior. For instance, the speed of an automobile driven by an experi-
enced driver will not usually oscillate much around the desired speed because the 
driver anticipates changes in speed and adjusts his pressure on the accelerator 
accordingly. The driver uses his brain to integrate information about his present 
speed and acceleration, which he obtains from the speedometer, with observations 
from the external environment, such as the slope of the road, to predict his speed at 
some time in the future (Figure 1.12). He then feeds this information forward to his 
control of the accelerator. By anticipating changes in speed and making adjust-
ments accordingly, the driver reduces the time delay so that his vehicle approaches 
the desired speed gradually and without oscillation. For instance, Figure 1.13 shows 
the velocity trajectory of a vehicle starting from rest and approaching its desired 
speed asymptotically; that is, gradually and without oscillation. The driver has 
accelerated initially because his actual speed is well below the desired speed. 
However, at time t

1
 he notices that his speed is rapidly approaching the speed limit 

and he relaxes pressure on the accelerator in anticipation of reaching this speed. At 
time t

2
 he predicts that he will not attain this speed unless he gives the car more gas, 

and reacts accordingly. At time t
3
 he again anticipates reaching the correct speed 

and relaxes his foot, this time settling gradually into his desired equilibrium veloc-
ity. This negative feedback system, which now contains feedforward anticipation, 
is asymptotically stable because it approaches equilibrium without oscillation.

The critical component of a system with anticipatory feedforward is a predictive 
mechanism, or a model of how the system will behave under various environmental 
conditions. The experienced driver has a model in his mind of how the car will per-
form under different terrain and weather conditions, the model being constructed 
from past experiences. In a similar vein models of natural populations can be used 
by the manager to anticipate future population trends and to adjust his management 
plans. In a way the population manager is much like the driver of an automobile in 

Fig. 1.12 Control of a vehicle’s speed with negative feedback and anticipatory feedforward; the 
E’s are environmental inputs



that he uses census estimates of the present population, with experience from the 
past built into a mental or mathematical model, to determine harvest levels. In this 
way he maintains a much finer degree of control over the population he is managing 
and minimizes any oscillatory or cyclic instability in the system.

1.8. Systems Analysis in Biology

The theory of dynamical systems was advanced, primarily by engineers, for design-
ing complicated electronic and mechanical systems. In the mind of the engineer 
there is a picture of how the system should behave, a model if you like, and he 
designs the system to fulfill this concept. Thus, the best test of the engineer’s com-
petency is the actual performance of the system he designs. Control theory, particu-
larly the concepts of negative feedback stability, serve as keystones in the design of 
dynamical mechanical and electronic systems. The success of dynamical systems 
engineering in such things as the space program attests to the power and utility of 
these basic concepts. Whether they are equally useful in biology is a question that 
the reader will have to decide for himself.

The investigation of complex natural systems is, essentially, a reversal of the 
engineering problem. Here the system already exists and the investigator is mainly 
interested in how it works. In other words, he is trying to understand why the sys-
tem behaves as it does and to create a dynamical model of the workings, either in 
his mind or as a set of mathematical equations. His understanding comes by observ-
ing the behavior of the system as it responds to various environmental inputs, which 
may be natural or induced by the investigator. He then tries to deduce why the sys-
tem behaves as it does; that is, he attempts to deduce the characteristic structure, or 

Fig. 1.13 Asymptotic approach of a vehicle to the desired reference speed
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design, which produced the observed behavior. Systems analysis in biology, there-
fore, is the art of reconstructing the workings of a system, which the analyst did not 
design, from observations on its past dynamic behavior (Note 1.2). In contrast to 
the striking successes of systems theory in engineering, our inability to understand 
and manage our social, economic, and biological systems attests to the difficult 
problems facing the biological systems analyst.

Biological systems analysis involves the twin processes of observation and 
deduction. Although both processes are equally important, this book leans heavily 
toward the deductive side. That is, we will be more concerned with the structure of 
systems that other investigators observed than with the manner in which those 
observations were made. As a basis for deduction it is necessary to know something 
about the behavior of general systems with known structure. In other words, if we 
know that a system with a particular structure behaves in such and such a way, then 
when we observe similar behavior in another system we can propose a similar 
structure. It therefore behooves us to examine the behavior of some simple 
systems.

The first, and perhaps most important observation, is that systems with rather 
simple feedback structure and obeying simple rules often exhibit an astounding 
array of dynamic behavior. This property can be demonstrated using the so-called 
“Game of Life,” invented by the mathematician John Horton Conway (Note 1.3). 
The game is played on a large checkerboard, and the pieces (checkers) represent 
living organisms. The birth of new individuals and the death of old ones is governed 
by three simple rules: Every “organism” with one or less neighbors dies from isola-
tion; every one with four or more neighbors dies from overcrowding; and a new 
individual is born to any empty square that is adjacent to exactly three “organisms.” 
We can see from Figure 1.14 that there are three feedback loops: two positive and 
one negative. This might lead us to expect growth, decay, and equilibrium as possi-
ble behavioral patterns in the dynamic repertoire of the population.

The game is played by positioning a few counters on the board in a particular 
pattern, and then observing how the size and pattern of the population changes 
through time as the rules are applied. Figure 1.15 shows some numerical patterns 
that were produced when we started with six “organisms” arranged in three different 
starting configurations. As you can see, the dynamics were considerably dif-
ferent: Population A attained a steady state of four individuals after only one move, 

Fig. 1.14 Feedback structure of the “Game of Life”; the signs of the processes (arrows) show the 
qualitative effect of one state variable on another, so that increased population density causes 
increased deaths from overcrowding (+) but decreased deaths from isolation (−)



population B increased slowly for nine moves and then grew quite rapidly in a 
series of jumps, while population C oscillated for eight moves before declining to 
extinction. We could continue to produce a large number of similar simulations, but 
we would come to the same conclusion; namely that this system produces a con-
founding array of dynamic patterns in space and time, and that these differences are 
purely a product of the starting pattern and not of any internal changes in the struc-
ture of the system or its environment.

The game also illustrates how we can improve our understanding of a system by 
examining the behavior of additional state variables. For example, it is difficult to 
explain why population C in Figure 1.15 became extinct by examining its numeri-
cal dynamics alone. However, if we look at its spatial pattern the cause of its demise 
becomes apparent (Figure 1.16). Here we see that the center of the population 
became very overcrowded in generation 7. This overcrowding caused high mortal-
ity in the center, which resulted in two separate subpopulations in generation 8. 
These populations were too sparsely distributed to maintain growth and they died 
out from the effects of isolation by generation 12.

Although the “Game of Life” is but a parody, and should not be confused with 
real-life systems, it does show us that feedback systems governed by very simple 
rules can exhibit a confounding array of dynamic behavior. We can see that it may 
be difficult to understand the internal structure and processes of a system from 
empirical observations of its dynamics alone. It may be possible to describe most of 
the patterns that a system exhibits by observing it under a large number of different 

Fig. 1.15 Three numerical patterns produced by the “Game of Life”
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conditions, but this will require a tremendous amount of time and effort, and there 
will be no assurance that all possible behaviors have been observed. Thus, the weak-
ness of the empirical approach is that predictions cannot be made with any confi-
dence unless the system has previously been observed operating under similar 
conditions.

An alternative approach is to try to understand and describe the structure and 
processes of the system. The amount of information required to do this is usually 
much less than is needed to describe its complete array of dynamic behavior and, if 
the system is defined accurately, it will accurately predict behaviors that were not 
previously observed. However, this approach requires a considerable amount of 
intelligent detective work and judgment on the part of the analyst when trying to 
unravel the intricate network of interactions and interdependencies that make up the 
internal structure of a complex system.

The detective and the biosystems analyst have much in common. The detective 
attempts to reconstruct, from a series of clues, the probable chain of events that led 
to a particular crime. His deductions are made possible because he has a general 
understanding of human nature and, in particular, the criminal mind. The systems 
analyst works in a similar fashion. His clues are the behavior he observes in certain 
state variables as the system changes in response to environmental conditions. 
Based on these observations, and with a general understanding of how systems with 
known structure behave, he deduces the probable structure of the observed system. 
He then builds a model of the system “as he sees it” and evaluates it by comparing 
its predictions under given conditions with that of the real system operating under 
the same (or similar) conditions.

Our general understanding of feedback loops and how they affect the dynamic 
behavior of systems is particularly useful. We know that negative feedback loops 

Fig. 1.16 A spatial pattern produced by the “Game of Life”



frequently induce steady-state behavior or oscillatory instability. On the other hand, 
positive feedback loops usually cause exponential growth or decay dynamics. For 
example, in the “Game of Life” dynamics illustrated in Figure 1.15 population A 
exhibited steady-state behavior, B a growth process, while C decayed to extinction. 
From these few observations we might deduce that the system contained at least 
three feedback loops: a stabilizing negative loop, a positive growth loop, and a posi-
tive decay loop. As we know, these correspond to the “death from overcrowding,” 
“birth,” and “death from isolation” processes shown in Figure 1.14. Of course, sys-
tems of intercommunicating feedback loops may have much more complicated 
behavioral patterns than those discussed above. For instance, population C in 
Figure 1.15 oscillated for eight generations before it started on its path to extinc-
tion. This may give us a clue that time delays are present in the negative feedback 
structure. A time delay is present in the “Game of Life” because the numbers at one 
point in time (after a move) depend on the numbers and spatial distribution of 
organisms at the beginning of the move.

The deductive process leaves the systems analyst with a concept in his mind 
about the design or structure of the system he is observing. In order to discover 
whether this conceptual model is the correct one, he must formulate it as a quan-
titative model and test its predictions against new observations. The model struc-
ture may be represented as a block diagram or flow graph composed of state 
variables and their mathematical linkages (processes). The dynamic behavior of 
this model can then be compared with real-life observations made under similar 
operating conditions. If the model fails to behave like the real system, the deduc-
tive arguments are assumed incomplete or inaccurate, and the analyst has to 
refine his concept of the system. The process of evaluating the behavior of a 
model by comparing it with the range of behavior observed in the real world is 
known as validation, or, more correctly, invalidation. An invalid model means 
that the analyst must return to square one and again observe the behavior of the 
natural system. He may have to collect new data or evidence and then deduce a 
new structure and equations to explain all the observations he has made. Through 
the repetitive process of observation, deduction, and invalidation, the model is 
slowly refined until it simulates the behavior of the real system in a manner that 
satisfies the analyst (Figure 1.17). Model building may be thought of as a feed-
back process in which the model is continuously improved to meet some prede-
termined qualitative or quantitative criterion; for example, the analyst may be 
satisfied if the model simulates the general qualitative behavior of the system  
(i.e., steady states, growth, oscillations, etc.), or may demand quantitative predic-
tions with particular precision (e.g., the observed values do not deviate more that 
10% from the prediction). At the end of this process the analyst should have a 
working concept of the system’s structure, which should enable prediction of 
future behavior over a wide array of environmental and initial conditions. But the 
analyst remains in an unenviable position, for the model can never be proven 
 correct. It can, however, be invalidated when observation are made that conflict 
with the prediction of the model. This situation should be kept in mind as we 
construct models of population systems later in this book.
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1.9. Chapter Summary

The main points discussed in Chapter 1 are emphasized below:

1.  A system is an assemblage of physical objects, parts, or components that interact 
or communicate with, or are interdependent on each other so as to operate as an 
integrated whole. The extent or boundary of a particular system is defined by the 
interests and perspective of the observer.

2.  All systems exist in space and time within a larger universe as part of a hierarchy 
of systems. This enveloping universe is called the system’s environment, and it 
supplies all the material, energy, or information necessary to make the system 
run, or which may disturb or destroy it.

3.  A system can contribute material, energy, or information to its environment, 
which may cause the environment to change to the benefit or detriment of the 
system.

4.  The state of a system at a particular time and place is described by the condition 
of its state variables.

5.  The dynamic behavior of a system describes the changes that occur in its state 
variables in time and space. Changes in state may be caused by a state variable’s 
interaction with its environment, with other state variables, or with itself. The 
resultant of all interactions may cause the state variable to increase (+), decrease 
(−), or remain unchanged (0).

6.  Block diagrams are composed of boxes, which represent processes, and arrows, 
which represent variables. Processes are stimulated by inputs or state variables 
and produce responses in outputs or state variables.

7.  Positive processes or mechanisms produce responses that are directly related to 
the stimulus, while negative processes produce responses that are inversely 
related to the stimulus.

8.  In chains of linked processes the overall stimulus-response relationship can be 
determined by multiplying the signs of the component processes.

Fig. 1.17 The process of constructing a model of a system



 9.  When a response is transmitted back to determining process, even if it passes 
through a number of intervening processes, a feedback loop is created.

10.  Negative feedback exists when the product of the signs of all processes in a 
feedback loop is negative, and positive feedback exists when the product is 
positive.

11.  Positive feedback loops usually amplify an initial stimulus or disturbance. The 
state variables move in the same direction as the initial stimulus so that they 
either grow or decay continuously.

12.  Negative feedback loops usually attenuate or dampen an initial stimulus or 
disturbance so that the state variables tend to return towards their original con-
ditions. In contrast to positive feedback, negative feedback loops often stabilize 
the dynamics of a system.

13.  The degree of stability induced by a negative feedback loop depends on the 
speed at which the response is transmitted back to its source, and the vigor of 
the negative, compensatory processes in the loop. That is, fast-acting gentle 
mechanisms induce greater stability than slow-acting harsh processes.

14.  When information concerning the expected behavior of a state variable is fed 
forward to the control mechanism in a negative feedback loop, a greater degree 
of control and stability is possible. Feedforward anticipation involves the pre-
diction of future system behavior from its present state and observation of 
environmental conditions.

15.  Natural systems can be analyzed by (a) observing the behavior of the system 
under an array of environmental conditions; (b) deducing the structure (boxes 
and arrows) of the system, particularly the feedback loops; (c) constructing a 
model of the system from the deductions; (d) evaluating whether the model 
behaves in a manner similar to the real system; and (e) returning to (a) if the 
model is unsatisfactory.

Exercises

1.1.  In winter, the temperature of a room is controlled by a thermostat linked to a 
furnace. Draw the structure of this system using a block diagram and describe 
the feedback loop. An experiment was performed to measure the actual tem-
perature in the room with a thermometer and it was found that the temperature 
cycled around the thermostat setting. Explain the probable cause of these 
cycles.

1.2.  Insert the disk that comes with this book in your computer and follow the 
instructions to find the program that simulates the “Game of Life”. Start with 
5 individuals and run simulations in different starting configurations. Explain 
the dynamic behavior you observe and the causes of that behavior. Repeat with 
different numbers of starters. What is the single most important conclusion 
from this exercise? For those interested in more information on the game, 
search the internet under “game of life”.

Exercises 23
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Notes

1.1.  For a general discussion of dynamical systems theory and its application in the 
biological sciences, the student is referred to the following works:

● Positive Feedback—A General Systems Approach to Positive/Negative 
Feedback and Mutual Causality, edited by J. H. Milsum, published by 
Pergamon Press, New York, 1968, is a compilation of works that examines 
the philosophical, historical, and technical aspects of dynamical systems 
theory, and its application in the biological and social sciences, in a manner 
comprehensible to the general scientific community.

● Biological Control Systems Analysis, by J. H. Milsum, published by 
McGraw-Hill Book Company, New York, 1966, is a much more technical 
treatment of dynamic systems theory for the advanced student. Although it 
is largely concerned with physiological systems, some population concepts 
and their control theory analogues are introduced. The general reader may 
find Chapters 1 and 2 a useful, if rather technical, introduction to dynamic 
systems and their control.

● Feedback Mechanisms in Animal Behavior, by D. J. McFarland, published 
by Academic Press, New York, 1971, is, as the title indicates, mostly con-
cerned with the application of control theory to behavioral systems. 
However, a lucid introduction to the elements of control theory is presented 
in Chapters 1 and 2.

1.2.  We often tend to draw rigid distinctions between the arts and sciences when 
such distinctions are fuzzy, at best. Many scientists spend much of their time 
in what can only be described as artistic endeavors. This is particularly true of 
those involved in the analysis and synthesis of natural systems. The artist uses 
concrete materials to construct an abstract model of something that exists in 
his mind. Likewise, the systems analyst uses concrete scientific information to 
construct an abstract model of how he thinks the system works. The model is 
his conception and, therefore, its resemblance to reality is only as good as his 
facts and his innate abilities to synthesize those facts into a model of the sys-
tem. The scientific method called the “hypothetico-deductive” (H-D) approach 
involves the validation, or better invalidation, of the conceptual model (see 
Stephen Fretwell’s book Populations in a Seasonal Environment for a nice 
summary of the H-D philosophy applied to ecological problems; the book was 
published in 1972 by Princeton University Press as part of their series entitled 
Monographs in Population Biology).

  Because the “art” of constructing abstract models rests on knowledge and 
insight concerning the nature of the system being analyzed, it is important that 
biological models arise in the minds of experienced and intelligent biologists. 
In the past, however, many biologists, although able to see the picture, were 
unable to paint it because they were unfamiliar with the tools - mathematics. 
Consequently incomplete or inaccurate pictures were often painted by those 
who were - the mathematicians. Fortunately this scene is slowly changing as 



biologists learn how to use the mathematical tools and mathematicians become 
students of biology.

1.3.  The “Game of Life” was first reported in the Mathematical Games section of 
Scientific American, vol. 223, no. 4, October 1970. Since then it has become 
a popular game amongst schoolchildren as well as professors of mathematics. 
The game can be accessed through most computer systems, usually under the 
code name LIFE. We heartily recommend that you invest a few hours playing 
the game to obtain a feel for the rich variety of dynamic behavior that can 
result from the application of even the simplest rules in a feedback structure. 
However, beware! People have become addicted to this game and withdrawal 
may be painful.
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Chapter 2
Population Dynamics and an Elementary Model

2.1. What is a Population?

We can think of a population as a group of individuals of the same species, which 
live together at the same time and in the same place. This statement implies the 
coexistence of, and potential interaction or intercommunication between, all the 
members of the population, and that the population is distinctly defined in space. 
Space should be tied in to the biology and behavior of a species – for example, an 
acre is too small to study an elk population. The spatial element, which is implied 
in statements such as “the population of New York” or “the population of insects in 
a wheat field,” is very important because it delimits the geographic boundaries of 
the population system being considered. Although the boundaries are often drawn 
rather arbitrarily, they should, ideally, enclose a distinct population unit (a much 
more strict definition used by systematic biologists is presented in Note 2.1).

The members of a population may interact in a number of ways. They may 
cooperate with each other during certain activities, such as hunting or nest building. 
At other times they may compete with each other for essential resources, such as 
food or space, which are in short supply. Of course, individuals also mate with each 
other to reproduce new individuals. As a result of these interactions new individuals 
are born into the population whilst others are lost.

The environment surrounding the population provides it with resources, such as 
food and shelter, as well as pressures from predators, parasites, and competition 
with other species of organisms. Immigrants may also enter from other nearby 
populations or individuals may emigrate out of the population.

These ideas concerning the structure and functioning of a population system are 
summarized in Figure 2.1. Although this scheme may be the most logical way to 
view the population as a dynamic system, it poses some severe analytical prob-
lems. In particular, each individual is treated as a separate component of the popu-
lation, forcing one to consider the possible interactions between each individual 
and all other members. When a population is large, as many are, the number of 
potential interactions becomes astronomical, equal to n(n − 1), where n is the 
number of individuals. Thus, a population of one thousand members will have 
almost a million potential interactions (1000 × 999 = 999,000). In order to reduce 
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28 2 Population Dynamics and an Elementary Model

the number of calculations, we often assume that all members have equal oppor-
tunity to interact with each other and, in so doing, produce births (natality), deaths 
(mortality), and migrations, which are characteristic of that particular population. 
These characteristic processes will be determined by the average properties of the 
membership, and of the environment in which they are living, and their operation 
will produce changes in the state of certain population variables. These ideas are 
summarized in Figure 2.2, where the average individual properties, acting with the 
environment, control the processes of population change which, in turn, affect 
certain population state variables, such as density, spatial arrangement, age distri-
bution, or the frequency of certain genes. Feedback loops may be formed if the 
state variables affect the properties of individuals or if they influence the environ-
ment. For example, dense populations may cause increased movements amongst 
certain individuals, resulting in emigrations, which may lead to changes in the 
structure of the population; that is, certain age groups or genotypes may emigrate 
whilst others remain. Dense populations may also affect their environments when 
waste products accumulate (pollution) or resources such as food and nesting sites 
are exhausted.

Our view of the population as a number of individuals with an average set of 
properties may leave some, including the authors of this book, with an uneasy feeling. 
The qualities of individual choice and action have been suppressed for the purpose 
of simplicity and tractability. However, until a systematic approach is developed 
which permits the expression of individual action, without the necessity of considering 
all possible individual variations and interactions, we must be satisfied with our 
present concept, or throw up our hands in despair.

Fig. 2.1 The population as a group of interacting individuals of the same species coexisting 
within specific geographic boundaries in an interval of time during which certain discrete events, 
such as births, deaths, and migrations, occur



2.2. Dynamics of Populations

In Chapter 1 the investigation of population systems was likened to a problem of 
detection. By observing the behavior of the system, searching for clues, and then 
using our basic knowledge of general systems dynamics, we can often deduce the 
probable structure that produced the behavior we observed. In this vein, let us now 
look at some characteristic patterns of behavior, which have been observed in natu-
ral populations. The analyst will first observe that populations can exhibit a con-
founding array of behavior. Remembering our experience with the “Game of Life,” 
we know that even simple rules may produce complex behavior when feedback 
loops are present in the system. Therefore, let us look at population dynamics with 
an eye for the possible feedback structure that produced the observed behavior.

In these times of dwindling natural resources we are all aware of the phenome-
non of population growth. Some populations, such as that of our own species, give 
the impression of continual growth (Figure 2.3A). Patterns of this kind are more 
commonly observed when species are colonizing a new and favorable environment. 
A typical example is the growth of a pheasant population after its introduction into 
an island off the coast of Washington (Figure 2.3B). The same population growth 
pattern is typical for insect pests during their outbreaks. From these observations 
we might deduce that population systems contain a positive feedback loop that 
enables them to grow when environmental conditions are favorable.

In contrast, some organisms have declined to eventual extinction; examples are 
the dodo, passenger pigeon, and dinosaur. The blue whale population illustrated in 

Fig. 2.2 The functioning of a population system
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Figure 2.4 may be heading for a similar fate. Although the extinction of species 
may be a matter of grave concern, it is a relatively rare event in the time scales with 
which we will be concerned. However, it is fairly common to observe the decline 
and extinction of populations in particular localities. These local extinctions are 
usually observed when the environment in a particular area becomes very unfavo-
rable for the species, either through severe natural alterations of the physical condi-
tions, the destruction or pollution of the environment by the population itself, or the 
actions of other organisms such as man. The pattern of decline illustrated by Figure 2.4 
indicates the presence of a positive feedback loop because the population continues 
to change in the direction of the initial movement. As both growth and decline 
patterns seem to be associated with properties of the environment, we might suspect 
that they are controlled by the same feedback loop, and that the environment deter-
mines, which pattern is exhibited. Thus, we should expect populations to grow in 
favorable environments and to decline in unfavorable ones.

Fig. 2.3 Population growth of (A) the human population of the United States (U.S. Bureau of the 
Census), and (B) pheasants on Protection Island, Washington (redrawn from A. S. Einarsen. 
Murrelet, vol. 26, pp. 2 and 39, 1945)

Fig. 2.4 Catch records of blue whales from the Yearbook of Fishing Statistics, Food and 
Agriculture Organization of the United Nations, Rome



Although populations may exhibit growth and decline patterns over certain periods 
of time, they eventually reach a condition of equilibrium with their environments. 
This equilibrium is usually attained at some positive population density, as is dem-
onstrated by the barnacle population in Figure 2.5. However, equilibrium at zero 
density, or extinction, is always a possibility. Many populations that we observe 
seem to remain for long periods at relatively constant densities, or to oscillate 
around some characteristic density. For example, the population of hole-nesting 
songbirds shown in Figure 2.6 fluctuated consistently around an average density in 
both oak and pine woods, although the mean population level was much higher in 
the former. It seems, therefore, that populations must be influenced by a negative 
feedback loop, which tends to regulate them at some characteristic density. 
Moreover, the level of regulation, or characteristic density (in systems terminology 
the “desired” or “reference” level), appears to be determined by environmental 
properties. If this is true, then the characteristic density should change if the envi-
ronment is altered. The experiment illustrated in Figure 2.7 provides us with some 
confidence in this line of reasoning because a change in the environment brought 
about by thinning the forest resulted in a change in the great tit’s characteristic 
density.

Let us now turn our attention to the oscillations seen in Figures 2.6 and 2.7. 
Although the bird populations seem to be regulated at a characteristic density, they 
fluctuate to varying degrees around this level. From our understanding of general 
systems dynamics we might suspect that these oscillations are due to minor envi-
ronmental disturbances or to negative feedback mechanisms that act with a time 
delay. In fact, both factors are probably involved because small displacements from 
equilibrium caused by minor environmental fluctuations are necessary to initiate 
the negative feedback response.

Fig. 2.5 Barnacle larvae settling on exposed rocks in the Firth of Clyde (redrawn from J. H. Connell, 
Ecological Monographs, vol. 31, p. 61, 1961)
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Populations are sometimes observed to remain at more or less constant densities 
for long periods of time but then to exhibit extreme fluctuations for a short time 
span (Figure 2.8). Such remarkable changes in the pattern of behavior suggest that 
severe alterations have occurred in the environment or in the negative feedback 
loop. The population of insects feeding on pine foliage (Figure 2.8) seemed to be 
living in a rather stable environment from 1900 until 1925 and to be regulated by 
fast-acting and gentle negative feedback processes. In the following years, however, 
a series of oscillations of increasing amplitude occurred which are suggestive of 
overcompensatory negative feedback. It seems plausible that an environmental dis-
turbance caused a change in the properties of the negative feedback structure, pre-
cipitating the dramatic population behavior. For instance, the disturbance could 

Fig. 2.6 Populations of breeding great tits in oak and pine forests in Holland (redrawn from 
H. N. Kluyver, Dynamics of Numbers in Populations, p. 507; Centre for Agricultural Publishing 
and Documentation, Wageningen, Netherlands, 1971)

Fig. 2.7 Breeding populations of great tits in a wood that was thinned in 1963 and later (redrawn 
after H. N. Kluyver, see reference in Figure 2.6)



have disengaged the gentle, fast-acting mechanisms, which regulated the popula-
tion at its previous low level. The released population may then have come under 
the influence of delayed feedback processes, which over-compensated for the den-
sity changes and produced the population oscillations. We will examine the possi-
ble causes for such divergent population behavior later in this chapter and in more 
detail in Chapter 3.

While irregular population explosions, which are often called outbreaks or epi-
demics, are characteristic of certain species, others seem to go through regular cycles 
of growth and collapse. There appear to be two general classes of population 
cycles: short cycles of a period of 3 to 5 years exhibited by lemmings and other 
small rodents inhabiting the artic tundra; and long cycles of 7- to 10-year periodic-
ity that are characteristic of many forest insects, game birds, and larger tundra 
mammals (see Note 2.2). It is also interesting that the cycles of a particular species 
are often synchronized, or in phase with each other, even though the populations 
may be widely separated in space from each other. In addition, the cycles of differ-
ent species also seem to be in phase in certain cases, such as several species of game 
birds in North America.

One of the most studied cyclic populations is that of the larch budmoth in the 
Engadin Valley of Switzerland (Figure 2.9). This insect defoliator of larch and pine 
goes through regular 9-year cycles high in the Swiss Alps. However, at low eleva-
tions the populations remain at relatively constant densities, fluctuating between 50 
and 100 individual larvae per unit of larch foliage; this is in comparison to the 
20,000-fold or greater increases and decreases seen in the high Alps (see Note 2.3). 
Similar phenomena have also been observed with other forest insects in Europe and 
North America, as well as with small rodent populations in Scandinavia and 
Germany. We are left with the general impression that populations can cycle in cer-
tain environments, but remain rather stable in others. Once again, the environment 
seems to play a decisive role in this difference in behavior.

Fig. 2.8 Population fluctuations of a moth feeding on pine needles in Germany (redrawn from F. 
Schwerdtfeger, Zeitschrift für angewandte Entomologie, vol. 28, p. 254, 1941)
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From a systems viewpoint we know that cycles may be caused if time delays are 
present in the negative feedback loops, and if the feedback mechanisms exert strong 
control on the system. This observation may lead us to deduce a similar cause for 
cyclic population dynamics. It is apparent that the environment plays a decisive role 
in maintaining or suppressing these cycles and may also be important in synchroniz-
ing them. The latter conclusion is based on the observation that population cycles 
are frequently in phase over broad geographic regions, and sometimes even between 
different species of organism. This means that the forces involved in synchronizing 
the cycles must operate over extensive areas and affect different species similarly, 
which suggests that climate or weather are probably involved. For example, severe 
winter temperatures and deep snow may cause a drastic reduction in the populations 
of a number of species over a wide area so that they all start at the same low densities 
and thereafter cycle in unison. Therefore, catastrophic environmental forces, acting 
simultaneously on different populations, may operate to synchronize the cycles even 
though they only occur at rather rare intervals (e.g., once every 20 or 30 years).

We have now looked at a number of ways in which natural animal populations 
behave, in particular, population growth and decline, equilibrium behavior, irregu-
lar outbreaks, and population cycles. From this we have deduced that at least one 
positive and one negative feedback loop must be involved in most population sys-
tems, and that the environment plays a crucial part in determining whether growth 
or decline occurs, setting equilibrium levels, and influencing the stability of nega-
tive feedback loops. Of course, we have not covered the complete waterfront. 
Populations can be found that do not seem to fit into these general patterns. In par-
ticular, rather haphazard and violent behavior may be observed in populations 
inhabiting extremely variable environments. In addition we have restricted our-
selves to observations on a single state variable – population numbers or density. 
This is because numbers are usually measured by population ecologists whereas 
spatial arrangement, age distributions, or gene frequencies are measured less often. 
We will have to consider these variables later in this book. Let us then proceed to 
the next step in systems analysis: the construction of a model.

Fig. 2.9 Nine-year population cycles of the larch budmoth in the Engadin Valley of Switzerland 
(from the works of, and personal communication with, W. Baltensweiler; see Note 2.3 for 
reference)



2.3. An Elementary Population Model

A population was previously defined as a group of coexisting organisms of the 
same species, which, on interacting with each other and with their environment, 
give rise to changes in the abundance of individuals in the population. During 
any given interval of time, each organism may reproduce, die, or migrate into 
or out of the geographic region bounding the population. The sum of all these 
individual activities produces a change in the population, which can be 
expressed as

Population change = Births + Immigration – Deaths – Emigrations

or

 ∆N = B + I – D – E, (2.1)

where ∆N represents a change in population density over a particular interval of 
time - usually a year or a generation. Now suppose that at the end of this period of 
time there were N

t
 individuals in the population, and that at the beginning, or at the 

end of the previous time period, there were N
t−1

 individuals. Then we can also 
express population change as

 ∆N = N
t
 – N

t−1
.
 

(2.2)

However, as birth, death, and migration are things that happen to individuals, 
rather than populations, it is probably more meaningful to express population 
change in terms of the individual. We can obtain a measure of the rate of change in 
the average individual by dividing everything by the size of the population at the 
beginning of the time interval, so that

 R
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where R represents the individual, or per capita, rate of increase over the time 
period t − 1 to t. We can see that when R is zero then births and immigrants exactly 
balance deaths and emigrants, and the population will remain at a constant level 
over the time period. However, when births and immigrants outnumber deaths and 
emigrants, R will be greater than zero and the population will grow, while vice 
versa the population will decline.

We can now write our simple model in terms of population size per unit area, N, 
and the individual rate of increase per unit of time, R, as follows:

R = (N
t
 – N

t−1
)/N

t−1
,
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or

 N
t 
= N

t−1 
+ RN

t−1
 (2.4)

From this equation we can calculate the density of the population at the end of 
a particular time increment from its density at the beginning of the interval and the 
individual rate of increase. The equation describes a positive feedback loop because 
the numbers at time t can be fed back into the right side of the equation to calculate 
population density in the next time period, provided of course that R remains 
 constant; that is, N

t
 becomes N

t−1
 as we move into successive time periods. The 

structure of this positive feedback loop is shown in Figure 2.10.
To demonstrate the dynamic properties of this system, let us suppose that we 

have a population of 10 organisms at time zero and that the per capita rate of 
increase remains constant at 0.5 individuals per unit of time. At the end of the first 
time period the population will be

N
1
 = N

0
 + RN

0

= 10 + 0.5 x 10 = 15

Using the new population as the input for the next cycle we get

N
2
 = 15 + 0.5 x 15 = 22.5

Fig. 2.10 A simple population model governed by positive feedback



If we continue through the feedback loop for two more time periods we will 
obtain the growth curve shown in Figure 2.11A. What we observe is the familiar 
exponential, or geometric, growth pattern, which is so characteristic of populations 
growing in a favorable and unrestricting environment (e.g., Figure 2.3). As we noted 
earlier, the system will only exhibit equilibrium behavior if R is zero (Figure 2.11B), 
and if R is negative, it will decline geometrically to extinction (Figure 2.11C), as may 
be happening to the blue whale population of Figure 2.4. In most ecological texts 
this population growth model is formulated as a differential equation, rather than the 
difference equation given by (2.4) (see Note 2.4). Note that when logarithms of 
population numbers are plotted on the vertical axis, the dependence in Figure 2.11 
becomes linear, which is easier to analyze than exponential dependence. Indeed, 
instead of raw population numbers we often use their logarithms, which makes the 
analysis easier. We will see another example when we will be speaking about the 
logistic growth.

We now seem to have a fairly reasonable model of the positive feedback loop, 
which we deduced must exist in our population system. This loop will usually cause 
a population to grow indefinitely or to become extinct, both of which are rather 
unusual occurrences. Therefore, the positive feedback tendencies must be counter-
acted by one or more negative feedback loops. Although this was realized by a 
number of early philosophers, it was the English clergyman Thomas Malthus who, 
in 1798, produced the first definitive treatise on the subject. His book, An Essay on 
the Principle of Population, presented the view that, when populations become very 

Fig. 2.11 Dynamics of the model shown in Figure 2.10 and defined by equation (2.4) when N
0
 = 

10 and R = 0.5 (A), R = 0 (B), and R = −0.5 (C)
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dense, there is an intense struggle between individuals for a diminishing supply of 
natural resources. In other words, the demand for resources by the expanding popu-
lation must at some point exceed the supply and, when this happens, the members 
of the population will compete with each other for the diminishing supply of 
resources. Supply, demand, and competition are, of course, a fundamental principle 
in all animal and plant economies, not to mention the complex economic systems 
of human societies. It is not surprising, therefore, that these ideas arose in the mind 
of an economic philosopher such as Malthus.

Malthus argued that a balance between supply and demand could only be attained 
through changes in a population’s variables; that is, changes in the birth, death, or 
migration rates. At the time these ideas bordered on heresy and gave rise to waves 
of theological and biological controversy, which have not completely subsided to 
this day. However, his ideas also stimulated a new school of population biologists. 
In particular, his concept of a “struggle for existence” led directly to Darwin’s 
theory for the evolution of species, and played an important part in the thinking 
of the early mathematicians Verhulst, Lotka, and Volterra who played such an 
important role in population theory. For these reasons, that erstwhile clergyman, 
Thomas Robert Malthus, is considered by many as the father of population biology 
(Note 2.5).

If we accept the proposition that competition for a scarce resource is reflected 
by changes in the crucial population parameters of births, deaths, and migrations, 
then we can introduce the Malthusian arguments into our population model by 
allowing the individual rate of increase, R, to be dependent on the density of the 
population. When population density is very low, relative to the supply of resources, 
we would expect births and immigrations to be high and deaths and emigrations to 
be low so that the individual rate of increase approaches some maximum called R

m
. 

However, as population density rises deaths should increase and births decrease so 
that the realized per capita rate of increase declines proportionally. Assuming that 
this decline is linearly related to population density, then we will obtain the rela-
tionship shown in Figure 2.12. The mathematical expression for a straight line with 
negative slope is

 R = R
m
 – sN, (2.5)

where R
m
, the maximum individual rate of increase, is determined by environmental 

and genetic effects, and s, the slope of the curve, represents the strength of the 
interaction between individuals in the population. The negative sign in front of the 
interaction coefficient s means that each individual has a negative effect on the 
other members of the population. In other words, the addition of a single individual 
to the population inhibits the reproduction and survival of its cohorts by the quan-
tity s, because it removes a certain proportion of the available resources. We will 
see later, however, that s may also take a positive value when individuals cooperate 
with each other in obtaining food or escaping from their predators (Chapter 3). Of 
course it is also theoretically possible for individuals to have no effect on each 
other, in which case s will be zero and, from equation (2.5), the realized individual 



rate of increase will equal the maximum (R = R
m
). Perhaps we can visualize this 

more clearly in the following statement:
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Of course when s is negative then this statement is identical to equation (2.5).
Because the interaction coefficient measures the intensity, or strength, of the 

interaction between individuals, it will assume a larger negative value in those spe-
cies, which utilize large amounts of the limiting resources. For this reason we 
would expect that, given equal resources, large organisms (elephants and whales) 
will have larger interaction coefficients than smaller ones (insects and 
crustaceans).

The Malthusian concept of a struggle for existence is expressed in the quantity 
sN of equation (2.5). We can see that as population density rises, intensifying the 
struggle for limited resources, sN increases and reduces the reproduction and sur-
vival, or the rate of increase, of the average individual. In this way we can think of 
the individual rate of increase, and through it the growth rate of the population, as 
being regulated by the density of the population. When we introduce this idea of 
density-dependent regulation into our population model we obtain a system 

Fig. 2.12 A linear relationship between the individual rate of increase, R, and population density, 
N, where R

m
 is the maximum per capita rate of increase, s is the slope of the relationship, and K 

is the equilibrium density
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 composed of two processes: a positive growth process and a negative regulation 
process (Figure 2.13). The latter is negative because the output variable R is 
inversely related to the input variable, population density. The interaction between 
these two processes gives rise to two feedback loops. In addition to the original 
growth loop (shown as a solid line in Figure 2.13) we now have a negative feedback 
loop (shown as a broken line). We can see that this loop has a total negative feed-
back effect because it is composed of one positive and one negative element, the 
product of which is negative [i.e., (+)(−) = (−)]. The equation for this system can 
be obtained by substituting equation (2.5) for R in equation (2.4) to yield

 N
t
 = N

t−1
 + (R

m 
– sN

t−1
) N

t−1
 (2.6)

Although the behavior of this system is determined, in part, by its feedback struc-
ture it is also strongly influenced by the parameters R

m
 and s, which themselves are 

affected by the quality of the environment and the genetic makeup of the popula-
tion. To understand the effects of these factors we need to evaluate the dynamics of 
the model.

Fig. 2.13 A simple population model governed by positive and negative feedback; the negative 
feedback loop is shown as a broken line



There is one problem with the equation (2.6). If N
t−1

 is large, then the population 
number at time t, N

t
, predicted by (2.6) may become negative, which does not have 

any biological meaning. The following modification of the logistic equation is then 
often used:

 N
t
 = N

t−1
e Rm (1 − Nt−1/K) (2.6a)

Because the “regulatory term” R
m
 (1 − N

t−1
/K) is now in the exponent, the value 

eRm(1 − N
t−1

/K) is never negative and so is the resulting prediction of N
t
. The simula-

tion of equation (2.6a) can be found in the disk that comes with this book, in the sheet 
“Modified logistic”. Alternatively, we can use the original equation (2.6), but instead 
of the population numbers, we use their logarithms. As the value of logarithm can be 
negative, the problem of negative predictions of N

t
 then becomes irrelevant.

2.4. Analysis of the Model

The dynamics of the model can be evaluated by starting at a particular population 
density, say 10 individuals per unit area of environment, which have a given maxi-
mum individual rate of increase, say R

m
 = 1, and a given interaction coefficient, say 

s = 0.001. The population density at the end of the first time increment is then

N
1
 = N

0
 + (R

m 
– sN

0
)N

0

N
1 
= 10 + (1 – 0.001 x 10)x10 = 19.9

After another time period the population will be

N
2 
= 19.9 + (1 – 0.001 x 19.9) x 19.9 = 39.4.

Continuing this procedure will yield the growth trajectory shown in Figure 2.14. 
According to this, the population grows rapidly at first but then slows down as it 
approaches an equilibrium density of 1000 individuals. The equilibrium density, 
labeled K in Figures 2.12 and 2.14, is a characteristic of the model, which is 
attained when the per capita rate of increase has declined to zero. It is often referred 
to as the carrying capacity of the environment because it represents the population 
density where all living space is fully utilized and there is no more room for addi-
tional growth. We can see from Figure 2.12 that K is related to both R

m
 and s 

because the slope of the line, s, can be expressed as

s = R
m 

/ K ,

so that 

K = R
m 

/s.
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In our example, therefore (Figure 2.14):

K = 1 / 0.001 = 1000.

The important thing to notice from this analysis is that environmental and 
genetic inputs, as reflected in R

m
 and s, determine the level at which the population 

comes into equilibrium with its environment; that is, they determine its carrying 
capacity. However, the mechanisms that control the growth and equilibrium behav-
ior are contained within the feedback structure. We can also see that larger organ-
isms, with their greater demand for resources and correspondingly larger s values, 
will have lower carrying capacities than smaller organisms.

Equation (2.6) can also be written in terms of the carrying capacity by substitut-
ing R

m
/K for s; that is:

 N
t
 = N

t – 1
 + (R

m
 – R

m 
N

t – 1
 /K) N

t – 1
 (2.7a)

or

 N
t
 = N

t – 1
 + R

m
 (1 – N

t – 1
 /K ) N

t – 1.
 (2.7b)

This formulation is similar to the so-called “logistic” equation for population 
growth, which was first proposed by the mathematician Verhulst in 1839 (the analo-
gous differential equation, which is more commonly encountered in ecological 

Fig. 2.14 A population growth trajectory computed from the model in Figure 2.13 and  equation 
(2.6), when N

0
 = 10, R

m
 = 1, and s = 0.001, and which equilibrates at a density K = 1000



texts, is derived in Note 2.6). The term “logistic” calls attention to the logistical 
problem of allocating scarce resources to an expanding population. The economics 
of the system are reflected in the term N

t−1
/K, which – in effect – represents the 

demand/supply relationship. For example, if we have U units of an essential 
resource, and if each organism requires u units to maintain itself, or to replace itself 
with an offspring should it die, then the maintenance demand of the population is 
uN, and the demand/supply ratio is (uN)/U. From this we can see that the carrying 
capacity K = U/u, or the resource supply divided by the maintenance demand of the 
individual. Thus, the carrying capacity is defined as the total population that the 
resources in a given environment can support.

Some natural populations seem to exhibit growth patterns, which are very similar 
to that shown in Figure 2.14 (e.g., the barnacle population in Figure 2.5). This 
smooth, or asymptotic, approach to a stable equilibrium should lead us to suspect that 
the negative feedback mechanisms operate very quickly, or at least very gently, to 
regulate population growth. However, we also know that, although negative feedback 
loops tend to create equilibrium conditions, these equilibria are not necessarily stable 
(Chapter 1). Instability may result when time delays are present in the feedback loops 
and if the system approaches its equilibrium level too rapidly. Now we can see from 
equation (2.7) that a time delay is, in fact, present in our model because population 
density at a particular point in time, t, is determined by its density in the preceding 
time period, t − 1. Thus, the system should become unstable as its rate of approach 
towards equilibrium gets large, and as this rate depends on the maximum per capita 
rate of increase, then unstable behavior should occur when R

m
 becomes large. For 

example, let us examine the steady-state behavior of the model when R
m
 is twice that 

in the first simulation. If we displace the population from its equilibrium density of 
1000 by a small number, say 10 individuals, then N

0
 = 1000 − 10 = 990, and

 N
1
 = N

0
 + R

m
 (1 – N

0
/K ) N

0

 = 990 + 2 x (1 – 990/1000) x 990 = 1009.8
N

2
 = 1009.8 + 2 x (1 –1009.8/1000) x 1009.8 = 990

and so on (Figure 2.15). The system seems to be on the verge of instability because 
the over- and undershoots are of equal size, and there is no tendency for the oscil-
lations to dampen out. The behavior of the model is somewhat reminiscent of the 
fluctuations seen in the bird populations illustrated in Figures 2.6 and 2.7.

If we continue to perform steady-state analyses we can show that the system is 
unstable whenever R

m
 is greater than 2 (Figure 2.16A). However, we can also obtain 

a general solution for the model’s stability in the following way: knowing that the 
system becomes unstable when the overshoot is larger than the initial displacement, 
then the criterion for instability is that

y / x > 1,

where x is the initial displacement and y is the overshoot. We can further show (see 
Note 2.7) that
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 y / x � R
m 

– 1  (� means approximately equal to) (2.8)

which means that the system becomes unstable as soon as the individual rate of 
increase exceeds 2. Thus, the situation simulated in Figure 2.15, where R

m
 is 

Fig. 2.15 Steady-state behavior of the model specified by Figure 2.13 and equation (2.7) when 
R

m
 = 2, K = 1000, and the initial displacement from equilibrium x = −10

Fig. 2.16 Steady-state behavior of the model when K = 1000, R
m
 = 3 (A), and R

m
 = 1.5 (B) and the 

initial displacement from equilibrium x = –10.



exactly 2, is a unique case, which is right on the borderline of instability. It is, in 
fact, a neutrally stable situation in which the amplitude of oscillation is determined 
by the magnitude of the initial displacement. For all other values of R

m
 the system 

is either stable or unstable, and the steady-state behavior of the model is defined as 
follows:

1. Unstable oscillations of increasing amplitude when R
m
 > 2 (Figure 2.16A) (see 

also Note 2.8).
2. Neutrally stable oscillations with amplitude determined by the initial displace-

ment when R
m
 = 2 (Figure 2.15).

3. Damped stable oscillations when 1 < R
m
 < 2 (Figure 2.16B).

4. Asymptotic approach to equilibrium when R
m
 ≤ 1 (Figure 2.14).

It is possible, of course, for longer time delays to be present in the negative 
feedback loop. For example, suppose that density-dependent interactions are 
affected by the size of the population two time increments in the past. The system 
equation will now be

 N
t
 = N

t –1
 + (R

m
 – sN

t –2
) N

t –1 
, (2.9a)

or

 N
t
 = N

t –1
 + R

m
 (1 – N

t –2
 /K ) N

t –1
. (2.9b)

Let us evaluate the dynamics of this equation using the same parameter values as 
we did in Figure 2.14. To start we need to know the population density for the first 
two time increments. Allowing N

0
 = N

1
 = 10, we can calculate

 N
2 
= N

1 
+ (R

m 
– sN

0
) N

1

 = 10 + (1 – 0.001 x 10) x 10 = 19.9
 N

3 
= 19.9 + (1 – 0.001 x 10) x 19.9 = 39.6

N
4 
= 39.6 + (1 – 0.001 x 19.9) x 39.6 = 78.4

and so on (Figure 2.17). We can see that the additional time delay in the negative 
feedback component causes a system, which previously equilibrated asymptoti-
cally, to produce cyclic dynamics. As we would expect, the delay has introduced 
additional instability. In fact, the stability criterion of equation (2.8) is more cor-
rectly written (see Note 2.9)

 y / x � R
m 

T – 1, (2.10)

where T is the length of the time delay, and stability is a quality of both R
m
 and T.

The steady-state behavior of the model with a delay of two time periods can be 
evaluated in the following manner: Suppose we have a system in equilibrium, and 
whose parameters are R

m
 = 1.5, and K = 1000, and we disturb it by removing 10 

individuals. The starting population densities will be N
0
 = 1000, N

1
 = 990. From this 
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we can compute N
2
 = 990, N

3
 = 1004.8, N

4
 = 1019.9, using equation (2.9b). You 

will find that the overshoot is only completely expressed after four time intervals 
(the student is encouraged to go through these calculations for a number of further 
increments). The overshoot ratio can now be computed from

y / x = (N
4 
– K)/10 = 19.9/10 = 1.99.

As y/x > 1, then the system is unstable. Of course, we could have calculated the 
approximate overshoot ratio much more easily from equation (2.10); that is:

y / x ≈ R
m
T – 1= (1.5 x 2) –1 = 2.

The effect of time delays in the density-dependent feedback processes can be 
 summarized as follows: (1) When there is no delay, then T = 0, R

m
T = 0, y/x = −1, 

and the system will approach equilibrium asymptotically regardless of the value of 
R

m
. This condition is not possible in our discrete-time model because T > 0, but it 

prevails in most continuous-time formulations of the logistic equation (however, 
see Note 2.10). (2) When the time delay is greater than zero, then stability is deter-
mined by the product R

m
T, and we find instability whenever R

m
T > 2, stable cycles 

when R
m
T = 2, damped-stable oscillations when 1 < R

m
T < 2, and asymptotic 

Fig. 2.17 Population growth predicted by equation (2.9) when N
0
 = N

1
 = 10, R

m
 = 1, s = 0.001 or 

K = 1000, and the density-dependent response is delayed by two time periods, T = 2 - otherwise 
the model is identical to that produced in Figure 2.14



 stability when R
m
T ≤ 1. However, as shown in Figure 2.17, a delay of two time 

periods caused the population to cycle smoothly around equilibrium in contrast to 
the sharp oscillations, which we got with a unit time delay. Thus, long time delays 
tend to increase the length of the period between cycles as well as the amplitude of 
displacement during the cycles.

2.5. Environmental and Genetic Effects

We have seen in Figure 2.13 that the properties of the environment and of the indi-
viduals making up the population influence the maximum individual rate of 
increase, R

m
, and the interaction coefficient, s. Thus, populations living in different 

environments, or with different genetic structures may behave quite differently. For 
example, suppose that a population grows to equilibrium in a particular environ-
ment with a given maximum rate of increase, say R

m
 = 1.2 as in Figure 2.18A. Then 

suppose that the environment becomes more favorable so that R
m
 increases to 1.8. 

As we can see in Figure 2.18A, not only has the environmental change raised 
the equilibrium density, K, but it has also caused the population to be less stable at 
equilibrium. It may be interesting to compare this simulated population with the 
experiment in environmental alteration illustrated by Figure 2.7.

It is even more intriguing to consider the effects of environmental or genetic dif-
ferences on the dynamics of populations that are regulated by lethargic (time 
delayed) density-dependent processes. In such cases we may find the population 
going through a series of regular cycles in the more favorable environments, where 
R

m
 is large, whilst in less favorable environments the population may remain at rela-

tively constant densities (Figure 2.18B). As we saw earlier, some natural popula-
tions seem to exhibit similar behavior in different environments (see also Notes 2.2 
and 2.3).

We have now produced an elementary population model, which can produce an 
array of dynamic behavior depending on the values given its three input parameters. 
To account for time delays of any length, the model may be written

 N
t
 = N

t –1
 + (R

m
 – sN

t –T
) N

t –1 
, (2.11a)

or

 N
t
 = N

t –1
 + R

m
 (1 – N

t –T 
/K) N

t –1 
. (2.11b)

This model generates exponential growth trajectories like Figure 2.3 when R
m
 is 

positive and the starting population density is very small relative to the equilibrium 
density K. Conversely, when R

m
 is negative we get exponential decline to extinction 

in a similar manner to Figure 2.4. The model also exhibits steady-state behavior at 
equilibrium, which may be asymptotically stable, as Figure 2.5, or may show sharp 
oscillations (Figure 2.6) or cycles (Figure 2.9) depending on the magnitude of the 
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time delay and the maximum per capita rate of increase. We can also visualize how 
changes in the environment, acting through the maximum individual rate of 
increase, can cause changes in the equilibrium density (Figure 2.7) and suppress or 
induce cyclic behavior. These are encouraging results, which give us some 
 confidence in the structural soundness of the model. However, there are still some 
conceptual weaknesses. In particular, the density-dependent feedback structure 
remains rather mysterious and retains the weak assumption of linearity. There are 
also problems in interpreting the eruptive kinds of behavior shown in Figure 2.8. To 
sharpen our concept of the population system we will explore the mechanisms of 
density-dependent population regulation in more detail in the next chapter.

2.6. Chapter Summary

In this chapter we have defined a population system, looked at some of the dynamic 
patterns that natural populations exhibit, and have constructed and analyzed an 
 elementary population model. The main points are summarized below:

Fig. 2.18 Dynamics of populations governed by equation (2.11) when subjected to environmental 
changes at a particular time, C, which affect the maximum per capita rate of increase, R

m
: (A) R

m
 

= 1.2 prior to time C and 1.8 afterwards, s = 0.1, T = 1: (B) R
m
 = 0.5 prior to time C and 1.0 

afterwards, s = 0.1 T = 2



1.  A population system consists of a number of interacting or intercommunicating 
individuals of the same species, which coexist within certain geographic boundaries.

2.  The environment provides the population system with inputs such as food, 
 nesting sites, space to hide from or escape predators, parasites, diseases, and 
competitors, and may also supply immigrants into the population. The environ-
ment may receive outputs from the population system in the form of depleted 
resources, pollution, and emigrants.

3.  We also consider the basic physiological and behavioral properties of the 
 individuals making up the population to be inputs into the system. These 
 qualities, acting in conjunction with the environment, govern the processes of 
natality, mortality, and migration, which control the state of the system.

4.  Natural population systems seem to exhibit four basic patterns of behavior: 
(a) Exponential, or geometric, growth and decline, depending on the favora-
bility of the environment, which is governed by a positive feedback loop. 
(b) Steady-state behavior about an equilibrium density, which is controlled 
by a negative feedback loop. The equilibrium density, or reference level, is 
set by environmental and individual properties, and the steady-state behavior 
may be characterized by gentle or violent oscillations around equilibrium. 
(c) Cycles of a 4- to 5- or 8- to 10-year period caused by time delays in the 
negative feedback loop. These cycles may be synchronized over broad geo-
graphic regions, probably by  environmental disturbances, and their amplitude 
is strongly influenced by environmental conditions, to the extent that they 
may be completely suppressed in unfavorable environments. (d) Erratic pop-
ulation fluctuations may be exhibited by populations inhabiting extremely 
variable environments.
It should be emphasized that a particular population may exhibit any of these 
basic patterns over a specific time period, and may switch from one to another 
as environmental conditions change.

5.  The positive feedback loop was described in the equation

N
t
 = N

t−1
 + RN

t−1
,

where N
t
 is the density of the population at time t, and R is the per capita 

rate of increase as determined by the processes of natality, mortality, and 
migration.

6. Density-dependent negative feedback was expressed by an inverse linear rela-
tionship between the individual rate of increase and population density

R
 
=

 
R

m 
– sN

t−T 
,

where R
m
 is the maximum per capita rate of increase, s represents the inhibitory 

effect of each individual on the rate of increase of its cohorts, and T is the time 
delay in the negative feedback response.

7. The stability of the negative feedback loop is determined by the maximum indi-
vidual rate of increase, R

m
, and the length of the delay in the feedback response, 
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T, such that the loop is unstable when R
m
T > 2, neutrally stable when R

m
T = 2, 

damped-stable when 1 < R
m
T < 2, and asymptotically stable when R

m
T ≤ 1.

8. Environmental and genetic changes, acting through the maximum individual 
rate of increase, R

m
, or the interaction coefficient, s, may cause dramatic changes 

in the dynamic behavior of the population system.

Exercises

2.1.  Suppose we have a population of 100 individuals and we observe that 20 new 
individuals are born during the following year, 10 die, 3 immigrate, and 5 
emigrate in the same time period.

A.  Calculate the per capita rate of increase, R.
B.  Predict population density for the next 15 years, assuming that the per 

capita rate of increase remains the same over this time. Use the disk that 
comes with this book for the simulation.

C.  What is unreasonable about this prediction?
D.  What will happen to the population if 15 individuals die per year, 3 immi-

grate and 8 emigrate, assuming that births remain the same? Calculate the 
per capita rate of increase, R and then use the disk that comes with this 
book for the simulations.

2.2.  A population is observed to remain at a relatively constant density of about 
2000 for many years.

A.  What processes may be involved in maintaining this status quo?
B.  Suppose an environmental catastrophe reduced this population to 200 indi-

viduals and, after the catastrophe, we observed that 400 new individuals were 
born, 100 immigrated, 20 emigrated, and 180 died during the following year. 
Calculate the per capita rate of increase in the year after the catastrophe.

C.  Calculate the maximum per capita rate of increase under the assumption that 
density-dependent processes act linearly and that the carrying capacity 
remains the same as before the catastrophe.

D.  Calculate the density-dependent coefficient, which represents the inhibitory 
effect of each individual on its cohorts.

E.  Using the disk that comes with this book, plot the trajectory this population 
will take over the next 15 years, assuming that the environment remains con-
sistently favorable during this time.

F.  Describe and explain the equilibrium behavior and stability properties of this 
population.

2.3. Evaluate the steady-state behavior of the model

N
t
 = N

t−1
 + R

m
(1 – N

t−T
/K) N

t−1



by plotting the dynamics for six time periods following an initial displacement of 
−10 from equilibrium, when the parameters are

A. R
m
 = 0.8, K = 1000, T = 1;

B. R
m
 = 0.8, K = 10,000, T = 1;

C. R
m
 = 0.8, K = 100,000, T = 1;

D. R
m
 = 1.8, K = 1000, T = 1;

E. R
m
 = 2.8, K = 1000, T = 1;

F. R
m
 = 0.8, K = 1000, T = 2;

G. R
m
 = 0.8, K = 1000, T = 3 (calculate for 200 time intervals).

Use the disk that comes with this book for the simulation. Calculate the overshoot 
ratio, y/x, from the graphs you make and check your answers against the equation

y / x � R
m 

T– 1.

What neighborhood stability qualities does the model have under the conditions A 
through G?

Notes

2.1.  The definition of population given in this book is purposely loose to allow 
flexibility in defining the geographic bounds of particular populations. As 
such it is distinct from the more rigid views of the taxonomist who, because 
he deals with the evolution of species from geographically isolated popula-
tions, insists that populations be separate from, and not interbreed with, other 
similar populations. In this strict definition, population boundaries are deter-
mined by barriers to migration, rather than arbitrarily determined boundaries.

2.2.  Much has been written concerning the causes of cycles in small mammal pop-
ulations. Theories ranging from sunspots to physiological and genetic selec-
tion have been erected and argued over. Although we have restricted ourselves 
to inferences gleaned from general systems theory alone, some references are 
included for those who may be intrigued by this subject.

Wildlife’s Ten-Year Cycle by L. B. Keith, published by the University of 
Wisconsin Press, Madison, 1963.

A paper by C. J. Krebs in Population Ecology, edited by L. Adams, published 
by Dickerson Publishing Co., Inc., Belmont. California, 1970, gives a 
review of current theories for the causes of lemming cycles.

Animal Population Ecology by J. P. Dempster, published by Academic Press, 
Inc., London, 1975, provides a number of examples of cyclic animal 
populations.

2.3.  The effect of elevation on the cyclic behavior of larch budmoth populations can 
be seen in Werner Baltensweiler’s paper in Dynamics of Numbers in Populations, 
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printed by the Centre for Agricultural Publishing and Documentation, 
Wageningen, Netherlands, 1971. Similar phenomena, where cycles occur in 
certain environments and not in others, have been noticed with other forest 
insects (e.g., A. A. Berryman, Canadian Entomologist, vol. 110, p. 513, 1978).

2.4. Equation (2.4) can be written as

N
t 
– N

t−1 
= RN

t−1 
= ∆N,

where ∆N represents the change in N over the time increment t − 1 to t. To obtain 
the instantaneous rate, we divide through by the time interval ∆t to give

∆
∆ ∆
N

t

RN

t
=

If we let R/∆t = r, the instantaneous rate of increase, and allow the time interval 
to become very small, then the equation can be written in continuous time

dN

dt
rN= ,

where dN/dt represents the change in population density in an instant of time. 
This equation can be solved to yield the continuous time equation

N
t 
= N

0
exp(rt).

where N
0
 is the initial density. From this we can compute population density 

after any length of time in a single step, whereas our discrete-time model had 
to be solved one step at a time. For example, when computing curve A in 
Figure 2.11 we calculated N

t
 for four time intervals to arrive at the density 

50.62. Using the continuous time equation with r = 0.41 gives

N
4 
= 10 x exp(0.41 x 4) = 50.625.

In order to do this we have to obtain equivalence between R and r. This is done 
by setting the time increment to unity, so that

N
t 
= N

t–1
exp(r)

N
t 
= N

t–1
 = N

t–1 
[exp(r) – 1]

and

N N

N
rt t-

t -

– 1

1

= −exp( ) .1

From text equation (2.3) we see that



R = −

−

N N

N
t − t

t

1

1

and therefore

R
 
= exp(r) –1,

or

r
 
= log

e
(R+1).

Although continuous-time equations are much more elegant and amenable to 
sophisticated mathematical analysis, they become very difficult to solve in 
complex systems. Although the discrete-time equation has to be solved by 
repeated calculation, its structure is readily apparent and, as we shall see later, 
this transparent structure will be helpful in our attempts to understand more 
complicated systems. For this reason discrete-time models will be used 
throughout the text, although their continuous analogues will be given in the 
notes when appropriate and possible. You will also find many examples of 
continuous systems in the disk that comes with this book.

2.5. For those students interested in the historical development of ecology as a 
science we recommend the book Principles of Animal Ecology by W. C. Allee, 
A. E. Emerson, O. Park, and T. Park, published by W. B. Saunders Co., 
Philadelphia, 1949. These authors note that Machiavelli and Giovanni Botero 
both anticipated Malthus’ ideas over 200 years before his book was 
published.

2.6. We can rewrite equation (2.7) (page 44) as

N
t 
= N

t−1 
+ R

m 
(1– N

t−1
/K ) N

t−1

or

∆
∆ ∆
N

t

R

t
m= − − −( / )1 1 1N K Nt t

and, if we allow the time increment ∆t to become infinitesimally small then, 
as R

m
/∆t = r

m
, we get

dN

dt m= −r N K N( / )1 ,
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which is the familiar “logistic” equation, first published in 1838 by P.F. 
Verhulst in his paper Recherches mathematiques sur la loi d’accrossement de 
la population in Memoirs de l’Academie Royal Bruxelles, pp. 1–38. The 
instantaneous per capita rate of increase, r

m
, is the maximum possible rate of 

increase in a given environment. This equation is stable under all conditions 
because the time delay is effectively zero. As we found in Note 2.4

r
m 

= log
e
(R

m
+1).

2.7. Proof that the overshoot ratio y/x � R
m
 − 1:

Suppose we have a population at equilibrium, K, and we displace it by an extremely 
small amount, say − x, so that N

1
 = K − x. Then, from equation (2.7) (page 44):

N
2 
= N

1 
= R

m 
(1 – N

1
/K ) N

1

and substituting K − x for N
1
 we get

N
2 
= K – x + R

m 
[1 – (K – x)/K ](K – x)

 = K – x + R
m 

(x/K ) (K – x)
 = K – x + R

m 
x (1 – x /K )

Now as the overshoot of the equilibrium position is y = N
2
 − K, then

y = R
m
x

 
(1 – x/K ) – x

and the overshoot ratio becomes

y/x = R
m 

(1 – x/K ) – 1.

The initial disturbance, x, was extremely small relative to K and so we can 
assume that x/K � 0. From this it follows that

y/x � R
m
 – 1.

Note that by making the assumption that x is a very small displacement, we are 
restricting our stability analysis to the immediate vicinity of K. The neighbor-
hood stability of a system is its stability close to the equilibrium point and is 
distinct from its global stability, where disturbances of any magnitude must be 
considered (see Chapter 1). In many systems, including the model we are ana-
lyzing, neighborhood and global stability are equivalent. However, more realis-
tic biological models, as we shall see later, are frequently nonlinear and, in such 
cases, a neighborhood analysis may not define the system’s global stability.

2.8.  Robert M. May [Science (Washington), vol. 186, p. 645, 1974] has shown that, 
as R

m
 becomes larger than 2, a rather surprising array of dynamic behavior 



emerges from this simple model. When 2 < R
m
 < 2.57 the unstable oscillations 

settle down into stable limit cycles of period 2n, where n is the number of 
points in the cycle; for example, when 2 < R

m
 < 2.449, we get a 2-point stable 

cycle (period 21). However, as R
m
 increases above 2.449 this cycle becomes 

unstable but then settles into a 22 = 4-point stable cycle, and so on. Check that 
these values are correct using the disk that comes with this book. Those inter-
ested in the mathematics of this phenomenon are referred to a paper by R. M. 
May and G. F. Oster in the American Naturalist, vol. 110, p. 573, 1976.

2.9.  Proof that the overshoot ratio y/x � R
m
T − 1:

Suppose we have a system that is described by the equation

N
t 
= N

t – 1 
+ R

m 
(1 – N

t – 2
/K ) N

t – 1
,

which specifies that negative feedback acts with a delay of two time incre-
ments. Now if we disturb this system from its equilibrium at K by a very small 
amount, say − x, then

N
1 
= K – x.

After the next time period the system will move to

N
2 
= N

1 
+ R

m 
(1 – N

0
/K )N

1

but, as N
0
 = K, then

N
2 
= N

1
 + R

m 
(1 – K /K )N

1
= N

1
.

As we cannot observe an overshoot in this first time period we must continue:

N
3 
= N

2 
+ R

m 
(1 – N

1
/K )= N

2
.

However, as N
1
 = N

2
 this equation becomes identical to that for a time delay 

of only one period. To obtain an overshoot resulting from a delay of two peri-
ods we must compute the dynamics over a further time increment:

N
4 
= N

3 
+ R

m 
(1 – N

2 
/K )= N

3
.

Substituting the previous equation for N
3
 we get

N
1 
= N

2 
+ R

m 
(1 – N

1
/K ) N

2 
+ R

m 
(1 – N

2
/K) [N

2 
+ R

m
 (1 – N

1
/K) N

2
]

and as N
2
 = N

1
 = K − x, and simplifying as we did in Note 2.7, we get

N
4 
= K – x + R

m 
x(1 – x/K ) 

 
+ R

m 
x(1 – x/K) + R

m 
(x/K) [R

m
x(1 – x/K)].
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With our assumption that x is an extremely small displacement relative to K 
so that x/K � 0, then

N
4 
� K − x + R

m 
x + R

m 
x + 0

and as the overshoot y = N
4
 − K, then the overshoot ratio is

y / x � 2R
m
 – 1.

We can perform the same, though much more laborious, analysis with larger 
time delays and show that, in general

y / x � R
m 

T – 1.

Remember from Note 2.7 that this is a neighborhood analysis, which only 
defines the global stability of linear systems.

2.10.  The influence of time delays on the behavior of the continuous “logistic” popu-
lation model was first described by G. E. Hutchinson in the Annals of the New 
York Academy of Science, vol. 50, p. 221, 1948. For those interested in a more 
rigorous discussion, the book Stability and Complexity of Model Ecosystems by 
R. M. May, Princeton University Press, 1975, is recommended.

2.11.  For those interested in a more thorough, but user-friendly analysis of continu-
ous systems we recommend the book A Primer of Ecology by N. J. Gotelli, 
published by Sinauer Associates, Inc., Sunderland, Massachusetts, 1998. A 
highly advanced analysis of population systems, including stochastic effects, 
is given in the book Analytical Population Dynamics by T. Royama, pub-
lished by Chapman & Hall, London, 1992. Its full understanding, however, 
requires a great deal of mathematical knowledge.



Chapter 3
Population Regulation and a General Model

In the last chapter we discussed the general concept of density-dependent negative 
feedback and its effect on the individual rate of increase. As we were most inter-
ested in the basic feedback structure of the system, we did not concern ourselves 
unduly with the mechanisms involved, or with a correct form for the negative feed-
back function. In this chapter, therefore, we will look at the biological processes 
involved in the regulation of population growth with an eye to developing a more 
general model of the population system.

3.1. Density-Dependent Mechanisms

Most ecologists now accept the proposition that the growth rate of a population 
must be related to its density. However, this was not always the case and, in the 
past, there has been considerable debate over the relative importance of different 
regulating mechanisms (see Note 3.1). Biologists working with small organisms 
inhabiting harsh physical environments frequently concluded that population 
density was controlled by the physical properties of the environment. On the 
other hand, those engaged in research in more benign environments, or with 
larger organisms, which are less affected by their physical environment, often 
concluded that populations were regulated by density-dependent negative feed-
back. Nowadays, however, most population ecologists accept the comprehensive 
view that density is regulated by a complex of factors pertaining to the population 
system and its environment as a whole, although at any particular time one or 
several of these factors may be playing a decisive role in limiting population 
growth. We came to this same basic conclusion in Chapter 2 when we recognized 
the importance of the environment in setting the reference level for density-
dependent regulation. Obviously, when the environment is changing constantly, 
populations will be continuously growing (favorable environment) or declining 
(unfavorable environment), giving the impression that the environment alone is 
controlling population size. In more consistent environments, however, popula-
tion densities tend to remain relatively constant, suggestive of strong negative 
feedback control.
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58 3 Population Regulation and a General Model

3.1.1. Competitive Processes

As both Malthus and Darwin realized, the most likely mechanism for the regulation 
of population density is the spontaneous competition that occurs amongst crowded 
individuals for limited environmental resources. The effects of this struggle for 
existence may be manifested in many ways: Some individuals may not obtain 
enough food to support life and so die of starvation. Others may survive, but with 
their reproductive capabilities reduced because of improper nourishment. Weakened 
individuals may be more vulnerable to predators and parasites and less resistant to 
diseases. In addition to food resources, organisms may also compete for space in 
the environment and, under crowded conditions, some individuals may be unable 
to find nesting sites or hiding places from their predators and parasites. Crowding 
may also cause subtle changes in the normal patterns of individual behavior, which 
may result in increased emigration out of the crowded regions and, in extreme 
cases, cannibalism and aberrant sexual behavior (see Note 3.2). The sum of all 
these effects of competition produces higher death and emigration rates, and lower 
birth and immigration rates, as the density of the population rises (Figure 3.1).

Some organisms possess behavioral mechanisms that help them to avoid the 
wasteful scramble for resources, which often leads to everyone getting something 
but nobody receiving enough to survive and reproduce. Territorial behavior ensures 
that those who win a territory obtain sufficient resources while the losers are left to 

Fig. 3.1 The effects of population density 
on (A) mortality of a beetle feeding on 
grain [redrawn from A. C. Crombie, 
Proceedings of the Royal Society (Section B), 
vol. 131, p. 135, 1944], and (B) the eggs 
laid by plant-feeding bugs (redrawn after 
L. R. Clark, Australian Journal of 
Zoology, vol. 11, p. 190, 1963)



fend as best they can. This may be a more efficient way of allocating scarce 
resources, but the essential ingredients of competition are retained in the struggle 
to obtain and defend a territory.

The effects of competition for scarce resources on the reproduction, survival, 
and migration of individuals are usually manifested quite rapidly so that time 
delays in the negative feedback loop are relatively short. Therefore, competitive 
interactions should stabilize populations at a characteristic equilibrium density set 
by the level of environmental resources. In other words, the reference level for the 
negative feedback is determined by environmental properties (see Figure 2.18). 
However, if the population has a negative effect on these environmental properties, 
then the reproduction and survival of future generations may also be affected. For 
example, a population may consume its food supply faster than it can be regenerated, 
in which case future populations will suffer a shortage of this resource. The accu-
mulation of waste materials, or pollutants, will have similar effects because they 
tend to have a greater impact on future populations than on those, which produced 
them. Delayed feedback can also occur through the response of predators, parasites, 
and diseases that are present in the environment. Predatory species often migrate 
into areas where their prey are abundant, or their numbers may increase because a 
plentiful food supply means greater reproduction and survival. However, as it takes 
time for predators to locate dense prey populations, and to convert their food into 
offspring, their numerical response to prey density will be delayed somewhat. The 
length of this time delay will depend on their efficiency at locating prey concentrations 
and on their fecundity and frequency of reproduction.

In general terms this means that whenever a population influences the properties 
of its environment, either through pollution, overexploitation of resources, or 
encouraging the buildup of natural enemies, then the effects will usually be trans-
mitted, with a time delay, to future populations. As we have seen in Chapters 1 and 2, 
delayed feedback can give rise to population cycles, such as those exhibited by the 
snowshoe hare and its predator, the Canadian lynx (Figure 3.2). These cycles could 
be caused by delays in the response of the lynx to the hare population, or the hare 
to its food supply or, more likely, a combination of both. Whatever the specific 
cause, our general rule states that the hare or lynx populations must affect, in some 

Fig. 3.2 Cycles in the population dynamics 
of the snowshoe hare and its predator, the 
Canadian lynx. T indicates approximate 
time delay in response of lynx to hare popu-
lation change (Redrawn after D. A. 
MacLulich, University of Toronto Series in 
Biology, no. 43, p. 5, 1937.)
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60 3 Population Regulation and a General Model

way, the properties of their own environments in order to create delayed feedback 
and the resultant population cycles.

Delayed feedback may also occur through the effect of population density on its 
genetic properties. For instance, we might expect the weaker genotypes to succumb 
first to the effects of intense competition. They may be more vulnerable to predation 
or disease, or less capable of grasping the disputed resources and, therefore, die of 
starvation. In addition, the stronger, more vigorous genotypes would tend to move 
out of the crowded regions in search of “greener pastures” (this is covered in more 
detail in Chapter 5). If these genotypes have different reproduction and survival 
characteristics, as we would expect, then these effects will be transmitted to future 
generations. Thus, genetic feedback can also create time delays, which may give 
rise to population cycles (see Note 3.3).

In certain cases genetic changes may become relatively permanent, giving rise 
to evolutionary trends. We usually think of evolution as the long-term formation of 
new species through the processes of mutation and natural selection. Although the 
study of population dynamics usually involves much shorter time periods, so that 
mutations can normally be ignored, we must be concerned with the adaptation of 
populations to their environments and to their own densities. For example, individuals 
with an exceptional ability to escape predators may be selected for so that their 
genotype makes up an increasingly large part of the population, and also alters the 
population growth rate. The population may then grow for a time but the increasing 
density will make prey capture easier for the predators and they will again exert 
their effect. In addition, the predators may also be subjected to evolutionary pres-
sure because of the difficulty they experience in capturing prey. This may lead to 
the co-evolution of predator genotypes with greater abilities for hunting and captur-
ing prey. Thus, we may see a continuous genetic jockeying amongst predator and 
prey genotypes, and the time delays intrinsic to adaptive evolution may cause population 
cycles (see Note 3.4). Similar co-evolutionary tendencies may also be visualized 
between competing species. These relationships, and those of predators and their 
prey, will be explored in more detail later in this book.

3.1.2. Cooperative Processes

Until now we have only considered the negative interactions between population 
density and the reproduction and survival of individuals. However, organisms often 
cooperate with each other in their search for food, to escape from predators, and 
during mating activities. For example, many predators form hunting groups (prides, 
packs, etc.) in order to capture large prey; fish and birds often form schools and 
flocks as a defense against predators, and certain insects aggregate their popula-
tions in order to overcome the defenses of their host plants (e.g., bark beetles; see 
Note 3.5). The social animals such as ants, bees, termites, and humans have developed 
the most complex cooperative behaviors, which may include specialized roles 
(division of labor) and altruism (self-sacrifice for the good of the group), both of 
which benefit the population as a whole (Note 3.6).



Cooperative processes have a positive feedback effect because they provide the 
average individual with a greater chance to survive and reproduce as population 
density rises. Thus we see that the survival of bark beetles improves as their density 
increases because the defense secretions of their coniferous hosts are diluted 
amongst a large number of individuals (Figure 3.3A), and flour moth females lay 
more eggs because they have a greater chance of finding a mate as population den-
sity rises (Figure 3.3B).

Cooperation between individuals is necessary for mating. Therefore, positive 
feedback often operates at low population levels because an increase in density 
provides a greater opportunity for finding mates. This also means that very sparse 
populations may be in danger of extinction because of difficulties that individuals 
may have in locating mates. This problem is particularly acute for those species that 
migrate to distant mating grounds or that have social mating habits. An example is 
the passenger pigeon, which seems to have become extinct when their populations, 
being decimated by hunters, became too sparse to effectively maintain their colo-
nial mating habits.

We have now seen that cooperative processes can result in a positive relation-
ship between population density and the reproduction and survival of individual 
organisms. We would expect this positive feedback effect to be most prominent in 

Fig. 3.3 (A) Effect of bark beetle attack 
density on the survival of its offspring 
from the defense secretions of its conifer-
ous host (redrawn after A. A. Berryman. 
Environmental Entomology, vol. 3, p. 579. 
1974). (B) Effect of population density on 
the number of eggs laid by flour moth 
females (redrawn from G. C. Ullyett, 
Journal of the Entomological Society of 
South Africa, vol. 8, p. 53, 1945)
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the lower density ranges and that, as populations become denser, the effects of 
competition should dominate to create an overall negative feedback loop. Thus, the 
combination of positive feedback cooperation and negative feedback competition 
often produces a unimodal relationship between population density and the individual 
rate of increase (see Figure 3.3B, for example).

3.2. Feedback Integration

Having examined the mechanisms that can be involved in the density-dependent 
feedback loop, it is now time to see how they operate together to control population 
growth. When we built the population model in Chapter 2, we made the tenuous 
assumption that the individual rate of increase was linearly related to population 
density. However, we have seen that some density-dependent interactions are 
decidedly nonlinear (e.g., Figures 3.1 and 3.3). The integrated effect of density-
dependent feedback can be seen by plotting the individual rate of increase, R, 
against the density of the initial population, N

t−1
. The rate of increase is computed 

from time-series population data by

 R = (N
t
 – N

t-1
)/N

t-1 
(2.3)

This is then plotted on N
t−1

, as is shown in Figure 3.4 for three different sets 
of data. As we can see, none of these data produce a linear density-dependent 
relationship.

When populations exhibit cyclic behavior it is impossible to identify density-
dependent relationships by plotting R on N

t−1
, for we will obtain cyclic trajectories 

(Figure 3.5A). However, we can sometimes find the density-dependent relationship 
and the magnitude of the time delay by plotting R on N

t−T
, increasing the delay T 

until the circular trajectory disappears. With the snowshoe hare data of Figure 3.5, 
a cyclic pattern is still evident when we plot R on N

t−2
, but it disappears when the 

time delay is increased to 3 (Figure 3.5B,C). From this we can infer that negative 
feedback acts on the hare population with a delay of about 3 years.

In the examples we have looked at so far, the density dependent interaction 
produces a single equilibrium point, K, where the curve intercepts the R = 0 
abscissa (see Figures 3.4 and 3.5). However, certain population systems appear to 
have more than one possible equilibrium position, even under identical environ-
mental conditions. An example of this is the strange story of the odd-year pink 
salmon run on the Atnarko River in British Columbia (Figure 3.6). During the census 
period from 1951 to 1965 the population of fish returning to the river to spawn 
cycled between five hundred thousand and three million individuals. The cyclic 
pattern indicated that time-delayed feedback mechanisms were involved in regulat-
ing the population. In the year 1967, however, the population, which was at the low 
ebb of its cycle, was drastically reduced by a combination of over-fishing and bad 
weather. To the surprise of the fishery managers, the run did not recover from this 



Fig. 3.4 Some observed relationships between the individual rate of increase, R, and population 
density, N, for (A) the edible cockle (redrawn from D. A. Handcock in the book Dynamics of 
Numbers in Populations, p. 419; see Figure 2.6 for complete reference), (B) the great tit (redrawn 
from H. N. Kluyver, p. 507 in the same book), and (C) the southern cowpea weevil (redrawn after 
S. Utida, Researches on Population Ecology, vol. 9. p. 1, 1967). Note that the equilibrium popula-
tion density, or carrying capacity, is indicated by K

Fig. 3.5 Relationship between the per capita rate of increase, R, and population density, N, for 
the snowshoe hare 1 (A), 2 (B), 3 (C) years in the past (see Figure 3.2 for reference). Note the 
equilibrium density for hares, K » 36
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catastrophe but continued to fluctuate around a new equilibrium level of about 
fifty-five thousand fish. A return to normal weather conditions and the reduction of 
fishing pressure did nothing to alleviate this problem. This system, with its two 
apparent equilibrium levels, leads us to suspect that the relationship between the 
individual rate of increase and population density has a complex form, perhaps like that 
shown in Figure 3.6C. To explain the shift from one equilibrium level to the other 
we can propose that cooperative activities were disrupted by the catastrophe of 
1967; perhaps the smaller schools were less effective in deterring predators or in 
capturing their own prey.

We have seen earlier (Figure 3.3B) that interactions between cooperative and 
competitive processes may produce unimodal density-dependent relationships. 
However, we now see that cooperation may also be important at high as well as low 
population densities, and that high-density cooperation may produce even more 
complicated multimodal curves. Perhaps a clearer picture of this phenomenon is to 
be seen in certain bark beetles that can only attack very weak trees when their popu-
lations are small but can kill relatively healthy trees at high population densities. 

Fig. 3.6 The numbers of odd-year pink salmon running the Atnarko River in British Columbia 
(A), the trajectory taken by the per capita rate of increase in relationship to population size (B), 
and the hypothesized interaction between cooperative and competitive processes in determining 
this relationship (C) (drawn from data in R. M. Peterman, Journal of the Fisheries Research Board 
of Canada, vol. 34, p. 1130, 1977)



This is because the large populations are able to cooperatively overwhelm the 
defenses of quite vigorous trees. Thus, the interaction between these bark beetles 
and their hosts may also produce bimodal density-dependent curves of the type 
shown in Figure 3.6C (see also Note 3.5).

Population systems that exhibit divergent behavior because of multiple equilibrium 
levels seem to be quite common in nature. Other examples will be examined later 
in this book and we will look at the mechanisms responsible for maintaining these 
equilibria in much more detail (Chapter 4). For the present, however, we will leave 
this interesting topic and return to our modeling exercise.

3.3. A General Population Model

The elementary model we constructed in Chapter 2 performed quite well at simulating 
the dynamic behavior that was observed in certain real population systems, but we 
have since uncovered some serious deficiencies. In particular, a general model 
should consider nonlinear density-dependent processes, cooperative as well as 
competitive interactions, and delayed feedback operating through the environment 
or the gene pool of the population.

Let us start from our basic equation for population growth; that is

 N
t
 = N

t-1
 + RN

t-1
, (3.1)

where R is the per capita rate of increase in the time interval t−1 to t for a population 
with fixed genetic structure living in a constant environment. When this rate of 
increase is linearly related to population density at the beginning of the time inter-
val, we can write

 R = R
0
 – sN

t-1
, (3.2)

where R
0
 is the limiting condition on R as N

t−1
 approaches zero. In this linear model, 

of course, R
0
 = R

m
, the maximum per capita rate of increase, but in some nonlinear 

cases R
0
 may not be the maximum (e.g., R

0
 is negative in Figure 3.7B,C). Now in 

this equation the negative sign of s implies that competitive interactions dominate 
the system over all population densities. As we have seen, however, cooperative 
interactions may sometimes dominate over certain ranges of population densities. 
When this occurs the sign of s will change to positive. In other words, the relative 
dominance of cooperative and competitive interactions may change as population 
density changes and this will be reflected by the magnitude of the coefficient s. If 
we assume that s is positive at low density and decreases linearly with increasing 
population density, then

 s = s
p
 – s

m
 N

t–1
, (3.3)
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where s
p
 is the maximum benefit received from cooperative interactions and s

m
 is 

the competitive effect which becomes more and more dominant as population den-
sity rises. Introducing this expression into equation (3.2) yields

R = R
0
 + (s

p
 – s

m
N

t – 1
) N

t – 1
,

or

 R = R
0
 + s

p
N

t – 1
 – s

m
N 2

t – 1
. (3.4)

This second order quadratic equation produces a unimodal individual rate of 
increase curve of the general form shown in Figure 3.7B. Of course, we can also 
derive higher order equations to describe the more complex curves (Figure 3.7C). 
However, our theory will still be constrained by underlying assumptions concerning 
the form of the cooperative and competitive interactions. To free ourselves from these 
constraints let us consider R to be an unspecified function of population density

 R = f (N
t – 1

), (3.5)

Fig. 3.7 Some possible relationships between the individual rate of increase, R, and population 
density, N; (A) a curvilinear competitive interaction, (B) cooperation acting at low density and 
competition at high density, (C) cooperation acting at low and intermediate densities and compe-
tition at intermediate and high densities. The K’s represent potential equilibrium points



which may result in any of the forms shown in Figure 3.7 or in a modification of 
one of these forms. The only constraint on this general equation is that competitive 
interactions must eventually dominate to create an upper equilibrium or carrying 
capacity. However, below this there may be one or more additional equilibrium 
points created when the relative dominance of cooperative and competitive interac-
tions changes with respect to population density. We will examine the effects of 
these different kinds of equilibria later in this chapter, but for now we will restrict the 
discussion to simple competitive systems such as that illustrated by Figure 3.7A.

In our analysis of population systems governed by linear density-dependent 
relationships (Chapter 2) we came to the conclusion that environmental and genetic 
properties influenced the maximum individual rate of increase of a population and 
its density at equilibrium. In other words, we would expect greater rates of increase 
and higher equilibrium densities in more favorable environments because there will 
be more food, fewer predators, and so on. Therefore, we can argue that environmen-
tal favorability will affect the amplitude, or height, of the basic density-dependent 
relationship and, through this, it will also affect the equilibrium density (see also 
Note 3.7). When we introduce environmental favorability as a variable in our 
model, we obtain a three-dimensional relationship between the individual rate of 
increase, population density, and environmental favorability as illustrated in Figure 3.8. 
Note that both the height of the curve as well as its interception with the zero 
growth plane (R = 0) change in direct relationship with the favorability of the 
environment.

Fig. 3.8 Three-dimensional representation of the interaction between the individual rate of 
increase, R, population density, N, and environmental favorability, F, where K represents the 
equilibrium density line at the interception of the curve with the R = 0 plane
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If we assume that the environment acts as a simple multiplier to the basic den-
sity-dependent function, then we can rewrite equation (3.5) as

 R = f (N
t – 1

) F, (3.6)

where F is a measure of the relative favorability of the environment over the interval 
t−1 to t. This will be determined by the relative abundance of food, nesting and hid-
ing places, predators, parasites and diseases, as well as climatic and other factors.

The effect of genetic variations may be visualized in a similar manner. Changes 
in the population gene pool, which affect the reproduction and survival of individu-
als, will alter the amplitude of the basic density-dependent relationship. Thus, we 
can incorporate genetic properties, symbolized by G, into the model to yield

 R = f (N
t – 1

) FG, (3.7)

if the multiplicative assumption is again made. We should also note that genetic 
evolution can also modify the shape of the density-dependent relationship because 
it can alter the basic processes of cooperation and competition. That is, genetic 
adaptations may lead to different cooperative or competitive strategies, which will 
change the overall shape of the function. However, as these changes normally take 
place over rather long time periods they will be ignored for the present.

In equation (3.7) the properties of the environment and the genetic structure of 
the population act as density-independent inputs into the system. However, if popu-
lation density influences its environment or gene pool, then these properties 
become components of feedback loops which may introduce time delays into the 
density-dependent response. For example, suppose that a population in one time period 
removes a part of its food resources and that this cannot be replaced by the time 
it is needed in the next time period. In effect, the favorability of the environment at 
one point in time has been affected by the density of the population in a previous 
time period. Whether or not population effects are transmitted through the environ-
ment depends largely on the rates of resource depletion and regeneration. That is, 
environmental favorability is only reduced if the resources are used up faster than 
they can renew themselves. These processes of environmental depletion and regen-
eration, and for that matter genetic adaptation as well, are extremely complex in 
their own right, and we cannot introduce them into our model without greatly com-
plicating the picture. However, we do know that one of the main effects of these 
feedback processes is to introduce time delays into the density-dependent relation-
ship, and that the average length of the delay can often be inferred from field data 
(see Figure 3.5). For the present, therefore, let us simply incorporate a variable time 
delay, T, into our model to give

 R = f (N
t – T

)FG (3.8)

where T may change in accordance with the effect of the population on its environ-
ment or genetic structure (Note 3.8).



We now have a general, though still highly simplified, conceptual model of a 
population system, the feedback structure of which is illustrated in Figure 3.9.
It has four potential feedback loops: (1) a positive growth or decay loop, A → B; (2) a 
population regulation loop, A → C → D; which may be positive or negative depending 
on the relative dominance of cooperative or competitive interactions; (3) an environ-
mental feedback loop, A → F → T → D; which will usually be negative and will 
introduce delays into the regulatory process; and (4) a genetic feedback loop, A → G 
→ T → D; which may be positive or negative and will also introduce time delays. In 
some population systems the last two loops may be inoperative, or may only operate 
at certain times or at particular population densities. For example, in the case of the 
Atnarko River salmon run (Figure 3.6), the environmental (or genetic?) feedback loop 
was apparently operating when the population was at its high-density equilibrium and 
this created time delays, which resulted in the cyclic trajectory we observed. However, 
after the population’s drastic collapse to its low-density equilibrium, the environmen-
tal feedback loop appeared to disengage and the cyclic behavior became less evident. 
This explanation seems reasonable because we would expect large populations to have 
more impact on the favorability of their environments than small ones.

Fig. 3.9 A generalized population model with delayed feedback acting through the environment 
or gene pool shown as a broken line

3.3. A General Population Model 69



70 3 Population Regulation and a General Model

3.4. Analysis of the Model

The model defined in Figure 3.9 can exhibit an astounding array of dynamic 
behavior depending on the form of the density-dependent function and on the 
presence or absence of environmental or genetic feedback. Because of these com-
plexities, a rigorous mathematical analysis such as we performed in Chapter 2 is 
impossible. The global stability properties of the model are particularly difficult 
to evaluate because they depend on the exact form of the density-dependent rela-
tionship. However, we can evaluate the local stability of the model in the neigh-
borhood of its equilibrium positions. For example, consider the simple 
density-dependent relationship shown in Figure 3.10: The equilibrium position, 
K, is determined by the interception of the function with the abscissa R = 0. If we 
assume that the function is approximately linear very close to this intersection, 
then we can evaluate its steady-state properties in the immediate vicinity of the 
equilibrium point. In the magnified view of the equilibrium region (Figure 3.10) 
we can see that a small negative displacement, − x, from equilibrium produces a 

Fig. 3.10 Steady-state analysis of a nonlinear density-dependent function in the neighborhood of its 

equilibrium point, K, where −x is a very small displacement from equilibrium, R¢ is the per capita 
rate of increase at K − x, and y is the overshoot of equilibrium following the initial displacement



starting population density of K − x which has a per capita rate of increase of 
R¢ > 0. Therefore, in the next time increment the population will grow by the 
addition of R¢(K − x) individuals. We can see from Figure 3.10 that the overshoot 
of the equilibrium point is

y = R¢(K – x) – x

and the overshoot ratio becomes

y / x = (R¢/x) (K – x) – 1.

Now we can also see from this illustration that the slope of the density-dependent 
function in the neighborhood of equilibrium is defined by s = R¢/x which, when 
substituted in the above equation yields

y /x = s (K – x) – 1.

Now if we let −x be an extremely small displacement relative to the equilibrium 
density, K, then we can make the approximation (K − x) » K, and the overshoot ratio 
becomes

 y /x » sK – 1. (3.9)

The criterion for a stable equilibrium is that the overshoot ratio is less than or 
equal to unity, and so the system will be unstable when

 sK > 2. (3.10)

As we would expect, this result is identical to that which we derived in our linear 
analysis (Chapter 2) because, if you remember, sK = R

m
 in the linear case.

By the same reasoning we can also include the effects of time delays (see 
Chapter 2), in which case the system becomes unstable when

 sKT > 2. (3.11)

Remember, because we are now dealing with nonlinear equations, an unstable 
system will not necessarily oscillate to extinction as the linear model predicts. The 
global stability properties are determined by the overall shape of the density-
dependent function remote from the point of equilibrium. In fact, we should suspect 
that most biological systems have evolved globally stable properties because other-
wise they would have gone extinct a long time ago. In the event that the population 
system is globally stable, but unstable in the neighborhood of its equilibrium point, 
we are likely to see rather unusual dynamic behaviors, including aperiodic oscilla-
tions, cycles, and periodic outbreaks (see references in Note 2.8).

Having examined the stability properties of the equilibrium point created by the 
dominance of competitive interactions, it is now time to look at cooperative equilibria. 
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In contrast to the competition curve, which passes downwards through the zero 
growth line R = 0 because s is negative, the cooperation curve passes upwards 
through this line (Figure 3.11). For this reason equilibria created by cooperative 
interactions are always locally unstable and any small displacement from the equi-
librium will result in continuous growth or decay away from it. For instance, we 
can see from the magnified view of the equilibrium point (Figure 3.11) that a small 
negative displacement, − x, gives a negative per capita rate of increase, − R¢, and 
the population declines in the next increment of time by the quantity − R¢(K

1
 − x). 

In other words, a slight displacement below the cooperative equilibrium produces 
a further population decrease and so on until the population becomes extinct. We 
can see from the figure that the second displacement from equilibrium is y = R¢(K

1
 − x) 

+ x, and that the ratio is y/x = s(K
1
 − x) + 1. Allowing that − x is a very small 

displacement, then the criterion for instability is that sK
1
 > 0. Thus, as long as the 

equilibrium position and interaction coefficient are greater than zero the equilibrium 

Fig. 3.11 Steady-state analysis of an equilibrium point, K
1
, formed by the dominance of coop-

erative interactions, where − x is a very small displacement from equilibrium, − R¢ is the per 
capita rate of increase following this displacement, and − y is the second order displacement after 
a further time increment



point will be unstable. It therefore becomes apparent that the only stable condition 
is the extinction of the population.

The unstable cooperative equilibrium (K
1
 in Figure 3.11) acts as a dividing line, 

or a threshold, which separates two distinct patterns of dynamic behavior: to the 
left of this point the population declines to extinction, while to the right it grows 
toward the upper competitive equilibrium, K

2
. Thus, K

1
 specifies the extinction 

threshold because it represents the limit to which a population can be reduced 
before it automatically declines to extinction. This, of course, is a very important 
concept for a population manager. Perhaps the blue whale population illustrated in 
Figure 2.4 has already been pushed beyond this threshold?

Another way to view the unstable cooperative equilibrium is that it separates the 
system in two domains of attraction to particular equilibrium points. Considering 
extinction as a stable equilibrium, E, because once it is reached the system remains 
there forever, then we specify the domain of attraction to E by N in (0, K

1
) and that 

to the upper equilibrium K
2
 by N in (K

1
,¥). Once again we see that the domains of 

attraction are separated by the unstable cooperative equilibrium, K
1
.

When we progress to more complicated density-dependent relationships, for 
instance Figure 3.7C, we find the dynamic behavior of the system is defined by 
three domains of attraction: (1) extinction behavior for N in the domain [0, K

1
), (2) 

low-density equilibrium behavior for N in the domain (K
1
,K

3
) and (3) high-density 

equilibrium behavior for N in the domain (K
3
,¥). Again, the behavioral domains are 

separated by the unstable cooperative thresholds K
1
 and K

3
.

The concept of domains of attraction to different equilibrium positions is 
extremely important to those involved in the management of renewable resources. 
These domains define the boundaries of resilience of the system to changes induced 
by the manager or, for that matter, to any abrupt or gradual environmental changes 
(see also Note 3.9). In other words, the population can be manipulated, say by har-
vesting, within a particular domain and it will return to its original equilibrium 
position when harvesting is discontinued. However, when the harvest is too great, 
or if harvesting plus an environmental catastrophe forces the population into 
another domain, then the original equilibrium population may never be attained 
even if harvesting is discontinued. Thus, the resilience of the system defines the 
limits to which it can be manipulated and still return to its original condition, and 
systems that are very resilient will have broad domains of attraction to their equi-
libria. Once resilience thresholds are exceeded, however, radically different 
dynamic behavior is initiated, which may be very undesirable from the manager’s 
point of view; for example, the collapse of the Atnarko river salmon run and out-
breaks of tree-killing bark beetles.

3.4.1. Environmental and Genetic Effects

Up until now our analysis has been restricted to populations with fixed genetic 
structure living in constant environments. However, we have argued that these 
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factors will act in concert to determine the amplitude of the basic density-
dependent relationship. For instance, the influence of environmental favorability 
on a simple density-dependent function is shown in three dimensions by Figure 3.8. 
We can see from this figure that higher equilibrium densities will be possible in 
more favorable environments. In addition, our stability analysis suggests that 
population systems will be less stable in more favorable environments because 
stability in the neighborhood of equilibrium is partly dependent on K, the equi-
librium density [see equation (3.10)]. This is a rather important observation 
because it implies that environmental improvements, say to produce greater crop 
yields (larger K), may create unstable systems and cause serious management 
problems. For example, modern agricultural practices enable the farmer to pro-
duce very high yields but, at the same time, problems from pest organisms 
(insects, fungi, nematodes, etc.) arise. Of course, these pests are natural compo-
nents of the density-dependent regulatory mechanism acting on the crop popula-
tion and – in the absence of pesticide applications – they would cause highly 
unstable conditions because outbreaks would periodically decimate the crop 
populations. Environmental manipulations should, therefore, be carefully stud-
ied before they are implemented, with the understanding that a less stable system 
is likely to be created.

It should be noted at this point that our concept of environmental favorability is 
an inclusive one. That is, we have included all environmental factors under the 
general heading of favorability. Although most of the following arguments will be 
centered around this simplified concept, we should be aware that the environment 
is composed of a complex set of interacting factors which may affect the organism 
in different ways. For example, food and space may be directly responsible for set-
ting the equilibrium density for the population, or carrying capacity, while factors 
such as temperature and moisture may have greater direct effects on the rate of 
growth towards equilibrium. However, the latter may also affect the equilibrium 
density indirectly through the rate of food replacement. Predators, pathogens, com-
petitors, and cooperators present in the environment will also affect growth rates 
and equilibrium densities, and climatic factors may act to moderate these interspe-
cific interactions. Thus, although a change in the favorability of a population’s 
environment may be caused by one or more of these factors, the result will usually 
be a change in the density of the population at equilibrium and its stability around 
the equilibrium point.

Of course, genetic changes may also affect the amplitude of the density-
dependent relationship in a similar way to the environment. Genotypes with 
higher reproductive potential or greater survival value, or which allow higher 
equilibrium densities to be attained, could promote instability in the population 
system. Thus the population manager should exercise the same caution when he 
manipulates the genetic composition of his stocks as he does in changing their 
environments. Although we will be primarily concerned with the dynamics of 
populations inhabiting changing environments in the remainder of this book, we 
should always bear in mind that genetic variations may cause similar or even 
more diverse dynamic scenarios.



3.5. Populations in Changing Environments

When we include environmental favorability as a variable in the density-dependent 
relationship we obtain a three-dimensional function like that in Figure 3.8. As you 
can imagine, it becomes rather difficult to analyze the dynamics of a three-dimen-
sional model and so we will reduce the relationship to two dimensions by suppressing 
the vertical axis. For instance, if we view the three-dimensional function of Figure 
3.8 from directly overhead we see that the zero growth plane (the plane of R = 0) 
is divided into two parts by the diagonal equilibrium line, K (Figure 3.12) (see also 
Note 3.10). To the left of this diagonal the individual rate of increase, R, is greater 
than zero and the population will grow in this zone, while to the right R < 0 and the 
population will decline if it resides in this zone. Thus, wherever a particular population 
is situated in this growth space, its qualitative behavior is determined by its position 
relative to the equilibrium line. As this graph also illustrates the net reproduction, 
or the change in population density over a given unit of time (i.e., N

t
 − N

t−1
 = RN

t−1
), 

we will refer to it as the reproduction plane.
We can also include some important information on the qualitative stability 

properties of the diagonal equilibrium line. Knowing that the neighborhood stabil-
ity of any point on this line is relative to the equilibrium density at that point, we 
can divide the line into three sections: a lower section, where K is small and sK ≤ 1, 
will exhibit asymptotic stability; a middle section, with 1 < sK < 2, will be damped-stable; 

Fig. 3.12 A reproduction plane divided into zones of population growth (R > 0) and decline 
(R < 0) by the diagonal equilibrium line (R = 0). The density of the population at equilibrium (K) 
changes in direct relation to the favorability of the environment (F). The equilibrium line is further 
divided into three sections with different stability properties; in the lower section sK ≤ 1 providing 
asymptotic stability, in the midsection we have damped stability because 1 < sK < 2, and in the 
upper section the population is unstable because sK > 2
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and an upper section, with large K and sK > 2, will be unstable in the neighborhood 
of equilibrium (Figure 3.12).

We are now in a position to look at the dynamic behavior of a population on the 
reproduction plane. For instance, suppose that a population starts at a small initial 
density, N

0
, in a consistently favorable environment (Figure 3.13A). Being to the 

left of the equilibrium line the population will grow from N
0
 to N

1
 during the first 

time interval, then to N
2
, and so on. However, because the net growth during any 

interval of time is dependent on both N and R (N
t
 − N

t−1
 = RN

t−1
) the magnitude of 

the growth increments will have to be proportional to these quantities. In the first 
time increment (Figure 3.13A) population change (RN) was fairly modest because 
N was small, but in the second period growth was considerably higher because both 
R and N were relatively large. Of course, as the population approaches the equilib-
rium line the growth rate must again decrease because R approaches zero. However, 
the dynamic behavior around equilibrium will be determined by the properties of 
the line at that level of environmental favorability. In our example the population 
approaches equilibrium with damped-stable oscillations because it is in the region 
where 1 < sK < 2 (Figure 3.13A).

Fig. 3.13 (A) A population trajectory on its reproduction plane showing growth over three time 
increments (N

0
 to N

3
) in a consistent environment and also following an environmental deteriora-

tion (broken line) at the end of the second time period. (B) A time-series plot of this population 
trajectory (solid line) with environmental favorability shown as a broken line



Let us now consider the dynamics of this population following a sudden change 
in the favorability of its environment. Suppose that the environment became less 
favorable at the end of the second time period (Figure 3.13A, broken line). The 
population at N

2
 is now to the right of the equilibrium line and so it will decline 

during the next time periods. In addition, because it has been carried into a different 
stability region, it will now approach equilibrium asymptotically.

We have shown that the reproduction plane forms a useful platform for evaluat-
ing the dynamics of populations inhabiting variable environments, and we will use 
this concept extensively in the remainder of this book. However, we should make 
it clear that the environment must be assumed to change in discrete steps. In other 
words we are assuming that the environment remains constant within each time 
period, but can change at the beginning, or end, of any time increment (Figure 3.13B). 
Although this assumption may restrict the application of graphical reproduction 
analysis, it appears quite reasonable for population systems that have discrete life 
cycles (many insects, salmon, etc.) or that are affected by seasonal patterns that 
show distinct year-to-year or season-to-season variations.

3.5.1. Environmental Feedback

We have avoided, up until now, the problem of populations affecting the properties 
of their own environments and the time delays that this may create. However, we 
should be able to evaluate feedback through the environment by using the repro-
duction plane. For instance, consider the system depicted in Figure 3.14, where the 
reproduction plane is divided vertically into two areas by the critical population 
density, N

c
. To the left of this density the population is too sparse to affect the 

favorability of its environment because resources are renewed as fast as they are used 
up, but to the right the population uses resources faster than they can be replaced. 
In effect, the critical density, N

c
, represents that population density, which utilizes 

resources at the same speed as they are produced or regenerated. Now suppose we 
start with a small population, N

0
, growing in a constant favorable environment. We 

will obtain the horizontal trajectory N
0
 → N

4
 (Figure 3.14A). However, as N

3
 is 

above its critical density, the environment for N
4
 will be less favorable and so the 

trajectory will deflect downwards according to the magnitude of the environmental 
change (broken arrow in Figure 3.14A). The population at N

4
, being to the right of 

its equilibrium line, will decrease to N
5
 but, being even denser than N

3
, it will 

reduce the favorability of the environment even further. Continuing with this line of 
reasoning we will generate the circular trajectory shown in the figure. Notice that 
as the population density falls below the critical density, N

c
, the resources are able 

to regenerate and the environment becomes more favorable again.
When populations affect the favorability of their own environments they tend to 

follow cyclic trajectories (Figure 3.14B). These cycles result because time delays 
are introduced into the regulatory process when population density at the beginning 
of one time period affects the favorability of the environment in the next. However, 
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we can see that the time delay is not a simple unit delay but has cumulative or his-
torical aspects. For example, the environment of the population existing at N

6
 

(Figure 3.14A) is very unfavorable, not only because of its density in the previous 
time period, but in the preceding two as well; that is, the environmental deterioration 
was brought about by the combined action of N

3
, N

4
, and N

5
. This is an interesting 

observation because it implies that the system has cybernetic qualities, or the 
capacity to store information in the form of memory, and that its behavior depends 
on “remembered” events, which happened in the past. Although giving population 
systems the attribute of memory may be stretching a point, there are obvious analogies 
in the feedback structure of the animal brain.

From a manager’s point of view, the dependency of the system’s dynamics on 
historical events has some important implications. Naturally, it is impossible for the 
manager to change history and, therefore, such systems are difficult to manage 

Fig. 3.14 Analysis of a reproduction system in which population densities greater than N
c
 reduce 

the favorability of the environment in future time periods: (A) A population trajectory (N
0
 to N

9
) 

where the magnitude of population and environmental changes are shown as solid and broken 
arrows, respectively. (B) A time-series plot of these population and environmental changes



without long-term planning and the methodology needed to project the conse-
quences of management decisions into the future. This lesson is extremely important 
when we consider the impact of expanding human populations on the qualities of 
their environments. Pollutants released into the environment may pose a greater 
hazard to future generations than to those, which produced them because they accu-
mulate with time, or their effects are fed back with a delay through complicated 
ecological pathways (remember the ozone layer, the “greenhouse effect,” and the 
cumulative impacts of the insecticide DDT). You can see some possible conse-
quences of deterioration of environment on population growth, if you run one of 
the computer examples in the disk that comes with this book (section 2.4.7, 
Deterioration of environment, and the corresponding model).

Our analysis of environmental feedback on the reproduction plane also helps to 
explain why certain populations, such as the larch budmoth’s (Figure 2.9), cycle in 
some environments but not in others. We can see that the population in Figure 3.14 
would not have cycled if it was living in a much less favorable environment; that 
is, in an environment where the equilibrium density was lower than the critical 
density, N

c
. Under these conditions the population would have grown to equilibrium 

asymptotically or, at most, with damped oscillations (the student is encouraged to 
demonstrate this using Figure 3.14A).

3.6. Complex Density-Dependent Relationships

So far we have only been concerned with reproduction planes created when competitive 
interactions dominate the population system at all densities (e.g., Figure 3.7A). It is 
now time to examine systems in which cooperative interactions dominate over par-
ticular density ranges. For instance, if the reproduction of individuals declines 
when population density gets very low because of difficulties they have in locating 
their mates, we will obtain a unimodal density-dependent relationship similar to 
that in Figure 3.7B. Now if the amplitude of this curve decreases as the environ-
ment becomes less favorable, then it is easy to visualize how the relationship will 
appear as the environment gradually deteriorates. The “hump” of positive growth 
(the region above the R = 0 line in Figure 3.7B) will slowly decrease until it disap-
pears below the zero growth plane, much like a smooth headland dropping gently 
into the ocean. From overhead the reproduction plane will look like that in Figure 3.15A. 
As before, the plane is divided into zones of population growth (+R) and decline 
(−R) by a U-shaped equilibrium line. However, the stability properties of this line 
have been changed considerably by the dominance of cooperative interactions at 
low population densities. These cooperative processes cause the equilibrium line to 
swing upwards to the left (shown as a dotted line in Figure 3.15A). As we know, 
equilibria created by cooperative interactions are inherently unstable (Figure 3.11), 
and so the left arm of the U-shaped equilibrium line represents an unstable threshold, 
which separates extinction behavior from the zone of population growth. Whenever 
the population is below this threshold, or whenever the environment becomes so 
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unfavorable that the population is carried below the apex (W in Figure 3.15A), then 
it will decline automatically to extinction. For example, the trajectory in Figure 
3.15A shows a population growing asymptotically to equilibrium in a favorable 
environment, but then being subjected to a severe environment for two time peri-
ods. This environmental catastrophe was sufficient to drive the population around 
the extinction apex and eventual extinction was not prevented by a gradual 
improvement of the environment (Figure 3.15B). This example illustrates the point 
that systems dominated by low-density cooperative interactions are extremely sensitive 
to severe environmental disturbances, such as overharvesting, dam construction, 
climatic alterations, or other man-made or natural disasters, and that extinction may 
not be avoided even if efforts are made to rectify the disturbance. It also under-
scores the logic of hatchery operations where large numbers of organisms are 
artificially reared to re-stock the declining population. For example, if the population 

Fig. 3.15 (A) Reproduction plane formed when cooperative interactions dominate at low population 
densities, showing an extinction trajectory caused by a severe short-term environmental disturbance 
(the unstable portion of the equilibrium line is shown as the dotted line V,W). (B) A time-series 
plot of the trajectories above



in Figure 3.15 had been re-stocked in the sixth or seventh time periods, so that its 
density was raised above the unstable threshold, then its extinction could have been 
prevented. However, if the environment had not improved, then the population 
could only have been sustained by repeated re-stocking.

In some population systems cooperative interactions may dominate at fairly high 
densities as well as at low ones, giving rise to complex bimodal density-dependent 
relationships (Figure 3.7C). In a gradually deteriorating environment the two 
“humps” of this curve will decrease and eventually disappear below the equilibrium 
plane to create a W-shaped equilibrium line (Figure 3.16A). This line will be made 
up of two unstable sections (V,W and X,Y) and two potentially stable sections (W,X 
and Y,Z). Population systems obeying this kind of reproduction plane may exhibit 
any one of three basic behavioral patterns: (1) extinction behavior if the density is 
below the unstable threshold (V,W) or if it is pushed around the apex (W) by unfa-
vorable environmental conditions; (2) low-density equilibrium behavior along the 
section (W,X) if population density is between the unstable thresholds (V,W and X,Y) 
and below the apex (X); (3) high-density equilibrium behavior around (Y,Z) if the 
population is above the unstable threshold (X,Y) and above the apex (Y) or (X).

Population systems characterized by the dominance of cooperative interactions 
at relatively high population densities exhibit extremely interesting dynamics in 
slowly changing environments. For example, suppose we have a population in 
low-density equilibrium, say at point A in Figure 3.16A, and the environment 
improves very gradually. The equilibrium point will move slowly up the equilib-
rium line towards the apex (X). However, once it reaches this apex it will enter the 
domain of the upper equilibrium line (Y,Z) and so it will grow rapidly towards the 
point B. The change in the environment may be so gradual that it is hardly notice-
able, yet it results in a sudden and dramatic alteration in the behavior of the system 
(see also Note 3.11).

It is also interesting to introduce the concept of environmental feedback into this 
complex system. When populations are held in the domain of the lower equilibrium 
line they will, in all probability, be below the critical density (N

c
) where environ-

mental feedback is initiated. Hence, time delays are probably minimal and the 
population should be held in a “tight” equilibrium. However, once populations 
enter the domain of the upper equilibrium line they are more likely to exceed this 
critical density, time delays will be introduced into the negative feedback loop, and 
cyclic trajectories may then be observed (Figure 3.16). In some cases the environment 
may be so severely affected by the exploding population that it will be carried 
around the apex (Y) and collapse back down to the lower equilibrium line. In 
extreme cases the population may even be carried around the apex (W) and become 
locally extinct.

We have seen that sudden and dramatic changes in the behavior of a population 
can be initiated by gradual changes in the favorability of the environment. Not so 
obvious, perhaps, is the fact that similar changes can be triggered by immigration. 
For instance, a population in equilibrium at A (Figure 3.16A) can be moved across 
the unstable threshold (X,Y) if large numbers of individuals migrate into the area 
from surrounding regions and raise the density of the resident population to D.
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Because populations governed by complex reproduction systems can exhibit 
sudden and unexpected changes in behavior, in response to rather minor environ-
mental disturbances or immigrations, they pose severe problems for the population 
manager. For example, if the organism described by Figure 3.16 was a pest, say a 
forest insect, we can see that a destructive outbreak may suddenly erupt for no 
apparent reason. The environmental change may be so gradual that the manager is 
unaware of it, or it may even have been caused by the actions of the manager him-
self. In addition we can see that, once the outbreak has started in a certain area, it 
can spread rapidly into adjacent regions as immigrants raise local population densities 
above the outbreak threshold. It is extremely important, therefore, for the manager 
to control the favorability of the pest’s environment and to treat areas of high favo-
rability with extreme caution.

Of course, if the population in question is a useful resource, rather than a pest, 
the manager would be concerned with keeping it within the domain of the upper 
equilibrium line. He should be particularly careful not to overharvest the popula-
tion and thereby push it into the domain of the lower equilibrium line. Even if he 

Fig. 3.16 (A) Reproduction plane formed when cooperative interactions dominate at low and 
intermediate densities, showing several dynamic trajectories in a slowly changing environment 
(see text for explanation). (B) A time-series plot of the trajectory A,X,B,C,A above



is practicing a conservative harvesting strategy, however, the population can still 
be pushed over the unstable threshold by inclement environmental conditions. 
This is probably what happened to the Atnarko River salmon run when it was 
subjected to harvesting and inclement weather during the same year (Figure 3.6). 
Once again, the manager should be primarily concerned with maintaining the 
favorability of the environment. In fact, if he can keep environmental favorability 
above the apex (X in Figure 3.16A), then the population will always be in the 
domain of the upper equilibria. It is also evident that useful populations can some-
times be re-established at their former levels of abundance through carefully 
designed stocking and habitat improvement programs. However, the latter is the 
only really effective way to eliminate the problem of undesirable low-density 
equilibrium behavior.

Although the theory of multiple equilibrium systems seems well founded and 
certainly has some useful applications in population management, they are not 
easy to define for real-life systems. In order to predict the behavior of these sys-
tems we need to define the unstable portions of the equilibrium lines. However, 
because unstable equilibria are transient phenomena, they cannot normally be 
defined by empirical observations alone. Thus we need to understand the causes 
of the unstable behavior; that is, how cooperative interactions change with popula-
tion density. Unfortunately, most of the theoretical and experimental research in 
the past has concentrated on competitive interactions and the action of mortality 
factors such as predators, parasites, diseases, and the like. More research needs to 
be devoted to the ways animals cooperate to avoid these mortality factors and to 
obtain food. Only then will we gain the knowledge necessary to manage these 
complex population systems.

We are now ready to leave our analysis of populations consisting of a single 
species occupying a defined geographic area, and to proceed to more complex sys-
tems involving two or more species and large areas in space. However, the concept 
of the reproduction plane developed in this chapter will be extremely useful in this 
pursuit. Hence it is important that these ideas are understood by the student. Our 
analysis has, it is hoped, demonstrated that the general population model we 
constructed in this chapter performs rather well at simulating the diverse behavior 
that we observe in nature. Whether this model is accepted by the reader as a valid 
representation of real life depends, of course, on whether he has been convinced by 
the arguments of these first three chapters. Whatever, it is now time to proceed to 
the challenging task of evaluating interacting population systems.

3.7. Chapter Summary

In this chapter we examined the mechanisms involved in the density-dependent 
regulation of single-species populations, built a general model of the population 
system, and evaluated the behavior of the model under a variety of conditions. The 
main points are summarized below:
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1. Population growth is regulated by density-dependent feedback acting on the 
processes of birth, death, and migration. Both negative and positive feedback 
may be involved in the regulatory mechanism.

● Negative feedback operates through competition for environmental resources, 
usually food or living space, which results in higher death rates due to starvation, 
cannibalism, predation, or disease, lower birth rates caused by malnutrition, disruption 
of sexual behavior, or lack of nesting places, and higher emigration rates. These 
effects are transmitted directly and rapidly back to the population, which stimu-
lated them.

● Delayed negative feedback occurs when populations affect their genetic or 
environmental properties because the intensity of competition is then depend-
ent on population density in previous time periods. Populations may affect 
their environments by removing resources faster than they can be replaced, by 
encouraging the immigration and reproduction of predators, parasites, and 
diseases, and by polluting their living space. Genetic feedback occurs when 
certain genotypes, with different reproductive or survival characteristics, are 
selected for at different population densities.

● Positive feedback operates when cooperative interactions are important in 
determining the reproduction and survival of individuals. These interactions, 
which may involve mating, food capture, escape, or other social behaviors, often 
dominate at low population densities but, in some systems, they may also 
become dominant at relatively high densities.

2. The overall effect of feedback regulation was viewed by plotting the individual 
rate of increase in relation to initial population density. This relationship was 
rarely linear. Circular plots indicate the presence of time delays in the regulatory 
mechanism. The length of the delay can often be found by plotting the individual 
rate of increase against population density in previous time periods. Complicated 
relationships, with one or more peaks, are found in systems where cooperative 
and competitive interactions dominate at different population densities.

3. A general population model was constructed to account for the variety in the 
natural regulatory mechanisms. The basic density-dependent function is moder-
ated by environmental and genetic properties, largely through their effect on the 
amplitude of the function.

● The steady-state behavior of the model is dependent on the presence of coop-
erative and competitive processes, the slope of the density-dependent function, 
and the population density at equilibrium. Equilibria created by cooperative 
processes are always unstable, acting as thresholds, which separate distinct 
patterns of behavior, or domains of attraction to different potentially stable 
equilibria. Competitive equilibria, on the other hand, may be stable or unsta-
ble, depending on the slope of the density-dependent function and the density 
of the population at equilibrium. The global stability properties, however, 
depend on the overall form of the density-dependent relationship.

● Environmental and genetic properties affect the amplitude of the density-
dependent function and, through this, the equilibrium density and the stability of 



the system. Populations probably evolve a genetic structure that guarantees a 
globally stable equilibrium under the most prevalent environmental conditions.

4. The dynamics of populations inhabiting variable environments was evaluated on 
a reproduction plane, which shows the relationships between equilibrium densi-
ties, or an equilibrium line, and environmental favorability. Time delays, which 
are introduced when population density exceeds a critical level where the favo-
rability of the environment is affected, were also evaluated and found to produce 
population cycles. The environment also plays a crucial role in determining the 
presence or absence, and the amplitude, of these cycles.

5. Equilibrium lines become quite complicated when cooperative as well as com-
petitive interactions dominate at different population densities. Unstable thresholds 
may be produced when cooperative interactions dominate, and these separate 
domains of attraction to potentially stable equilibria, or define the boundaries of 
population resilience. Dramatic changes in the behavior of the population may 
occur when these unstable thresholds, or boundaries, are transcended. Low-density 
cooperative interactions may create extinction thresholds, whilst high-density coop-
eration can result in systems with two or more potentially stable equilibria. In 
the latter case, time delays are likely to occur in the regulatory mechanism as 
populations near their high-density equilibria, resulting in population cycles, 
collapses to the low-density equilibria, or even local extinctions.

Exercises

3.1. Syunro Utida (see Figure 3.4 for reference) performed an experiment in which he 
grew populations of pea weevils on 10 grams of Azuki beans (50–60 beans). 
Starting with 16 weevils he counted their progeny at the end of each generation and 
then supplied them with a similar quantity of beans. He obtained the following 
census over nine generations: 16, 294, 125, 250, 130, 213, 160, 200, 150, 180.

A. Calculate the realized per capita rate of increase for each generation and graph 
it as a function of population density at the beginning of each generation.

B. Determine the neighborhood stability of this system by graphical means and 
by measuring the slope of the curve and the equilibrium density.

C. Do cooperative interactions play an important role in this system and are 
time delays present in the density-dependent relationship? If not, why not?

3.2. The density of a population is observed to change over a 10-year period in the 
following way: 200, 320, 100, 400, 30, 80, 340, 70, 300, 160, 370.

A. Calculate the individual rate of increase for each year and graph it as a func-
tion of the initial population density.

B. What is the neighborhood stability of this population system? Define the 
steady-state characteristics graphically and by measuring the slope of the 
curve and the equilibrium density.
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C. What do you think the global stability properties of this system are?
D. Are cooperative interactions and/or time delays operating in this system?

3.3. Over the years 1964 to 1971 a bark beetle population was measured and the 
following densities were found: 100, 303, 1267, 1333, 832, 212, 157, 321.

A. Calculate the per capita rate of increase for each beetle generation (the bee-
tle has one generation per year) and then plot it against the initial densities; 
because of the large numbers involved you will obtain a better plot if you 
transform the data to logarithms.

B. Are time-delays present in this system and, if so, what is the approximate 
length of the delay?

3.4. Carefully examine Figure 2.6 (page 32).

A. Explain why the equilibrium levels, and the amplitude of the oscillations, 
are different in oak and pine woods.

B. Do you think time delays are involved in the regulation of these populations?

3.5. Carefully examine Figure 2.7 (page 33) and explain the dynamics observed 
using a reproduction plane with stand density as your environmental favorabil-
ity axis: you will have to use your imagination because the equilibrium line 
cannot be specified exactly by the data.

3.6. Extract the data for the hare and lynx populations from Figure 3.2; that is, cal-
culate the approximate numbers of hares and lynx for each year. Assuming that 
the hare population size determines the favorability of the lynx’s environment, 
plot the lynx–hare trajectory on a reproduction plane and put in the equilibrium 
line. You can do this by plotting the net reproduction of the lynx in each year 
(i.e., N

t
 − N

t−1
) next to the appropriate hare density at the beginning of the year 

to give the population change vector in an environment of given favorability. 
The environmental change vector, then, is the net reproduction of hares.

3.7. Examine Figure 3.6 and explain the observed dynamics of the salmon popula-
tion by constructing an appropriate reproduction plane.

Notes

3.1. A great deal of semantic confusion has surrounded the concept of density-
dependence, which was first introduced by H. S. Smith (Journal of Economic 
Entomology, vol. 28, p. 873, 1935) to describe a mortality factor which 
destroys an increasing percentage of a population as its density increases. In 
this book we use the term in its broadest sense to mean a feedback mechanism, 
which responds to the density of the population. This does not necessarily 
imply negative feedback, as Smith’s definition does, and is, therefore, more 
in line with Haldane’s concept (New Biology, no. 15, Penguine Books, London, 
1953). The various interpretations of the term “density-dependence” are 



summarized by M. E. Solomon in the book Natural Regulation of Animal 
Populations, edited by I. A. McLaren, Atheron Press, New York, 1971. This 
book also deals with some of the more recent theories for the natural regulation 
of animal populations, including genetic feedback and co-evolution. A good 
summary of the great debate of the fifties, concerning the role of physical ver-
sus biological factors, can be found in the book The Ecology of Insect 
Populations in Theory and Practice, by L. R. Clark, P. W. Geier, R. D. Hughes, 
and R. F. Morris, Methuen & Co., Ltd., London, 1967.

The comprehensive theory of natural control resulted from the work of many 
ecologists. However, the paper by C. B. Huffaker, which he presented at the 
Tenth International Congress of Entomology in 1958, is one of the first defini-
tive statements leading to the contemporary viewpoint (the paper can be found 
in the Congress Proceedings, vol. 2, p. 625).

3.2. Examples of unusual behavior brought on through physiological and psycho-
logical stress amongst animals living under crowded conditions can be found 
in Desmond Morris’ article “Homosexuality in the ten-spined stickleback” 
(Behavior, vol. 4, p. 233, 1952), and John Calhoun’s “Population density and 
social pathology” (Scientific American, February 1962). The latter is based on 
experiments with crowded rats. Some typical responses to overcrowding were 
hypersexual and homosexual behavior, cannibalism of young, and continuous 
fighting amongst dominant males. Robert Ardrey, in his book The Social 
Contract (Athenum Press. New York, 1970), drew parallels between these 
experiments and the behavior of crowded humans. Although these works have 
received considerable criticism, their insights should not be dismissed lightly. 
As Thomas Malthus emphasized so strongly in his Essay on the Principle of 
Population (see Ann Arbor Paperbacks, University of Michigan Press, 1959, 
for a more recent edition) almost 200 years ago, both misery and vice result 
from the struggle for scarce resources. Ecologists and demographers have gen-
erally been more concerned with misery in the form of starvation, disease, 
warfare, and such. And rightly so, because modern technology can temporarily 
alleviate these miseries. However, the experimental work of Morris, Calhoun, 
and their colleagues, has given weight to the second dimension of the 
Malthusian thesis, that crowding can cause social stress and lead to abnormal 
social behavior or, in Malthus’ own terms, vice. It is interesting that discussion 
of vice, and the moral and social issues this gives rise to, is almost as risky 
today as it was in Malthus’ times (see also Note 3.6).

3.3. Dennis Chitty has proposed that antagonistic interactions amongst crowded 
voles cause changes in the genetic properties of succeeding generations which 
makes them less resistant to normal mortality factors, and that this delayed 
genetic feedback is responsible for population cycles. For those interested in 
Chitty’s views, his paper in the Canadian Journal of Zoology (vol. 38, p. 99, 
1960), and the excellent summary by C. J. Krebs in the book Population 
Ecology, edited by L. Adams (Dickerson Publishing Co., Delmont, California, 
1970) are recommended. Chitty also gives a summary of these ideas in the 
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book Natural Regulation of Animal Populations, edited by I. A. McLaren 
(Atherton Press. New York, 1971).

3.4. The view that stability between co-evolving populations of plants, herbivores, 
and carnivores is maintained by genetic feedback was proposed by David 
Pimentel. For example, see his contribution to the book Natural Regulation of 
Animal Populations (Note 3.3 for reference). In this sense, the efficient preda-
tor (herbivore or carnivore) puts strong selective pressure on its food species to 
evolve resistance to attack, and this feeds back to the predator population to 
limit its numbers. Pimentel proposes that, after many such cycles, a stable 
equilibrium between predator and prey populations is attained; that is, the sys-
tem approaches equilibrium with damped-stable oscillations. Pimentel also 
reports on laboratory experiments that support this argument.

3.5. Bark beetles of the family Scolytidae, order Coleoptera, are insects that attack 
and kill living trees and then reproduce in the dying host. These beetles have 
evolved a system of chemical communication (pheromones), which draws 
beetles flying nearby to a recently attacked tree, and this “mass attack” helps 
them overcome the defenses of their host. When large numbers of beetles are 
flying, even healthy, vigorous trees can be overwhelmed because the rapid 
mass attack circumvents the host’s defenses that need a period of time in which 
to operate effectively. When populations are small, however, the tree’s 
defenses are usually effective and the beetle population can only succeed in 
colonizing unhealthy individuals. Because of this divergent behavior, caused 
by cooperative activities acting at high population densities, bark beetle sys-
tems sometimes have multimodal density-dependent curves like that of Figure 
3.6C; one such can be found in the paper by the senior author in the Bulletin of 
the Swiss Entomological Society (vol. 52, p. 227, 1979). For those interested in 
pursuing this subject we would suggest another of the papers by the senior 
author (Bioscience, vol. 22, p. 598, 1972) which deals with conifer defense 
systems, and one by J. H. Borden in the book Pheromones, edited by M. C. 
Birch (North Holland Publishing Co., Amsterdam, 1974) which reviews the 
pheromones of bark beetles and the behavior that they elicit.

3.6. The subject of sociobiology, or the biological basis of social behavior, is one 
of the newest and most controversial areas in the biological sciences. Its lead-
ing proponent, E. O. Wilson, who received the Pulitzer Prize for his book On 
Human Nature (Harvard University Press, Cambridge, 1978) presents this thesis 
in detail in Sociobiology: The New Synthesis (Belknap Press, Cambridge, 
Mass., 1975). Sociobiologists attempt to explain the origin of social behavior 
within a framework of classical evolutionary theory. That is, they are interested 
in the genetic basis of cooperative social interactions (e.g., sex selection, par-
enthood, and altruism), as well as competitive interactions (e.g., aggression and 
territoriality). The major controversy arises when these ideas, which arose 
largely from the study of “lower” animals, are applied to human behavior. The 
proposition that human behavior is rooted in evolutionary history is repugnant 
to some scientists who stress that the cultural environment is the dominant 
force molding human social behavior. Like most scientific controversies, the 



truth undoubtedly lies somewhere in between. For those interested in a philo-
sophical analysis of the sociobiological debate, albeit slanted towards Wilson’s 
views, we would suggest M. Ruse’s book Sociobiology: Sense or Nonsense (D. 
Reidel Publishing Co., Dordrecht, Holland, 1979). Popularized versions of 
early sociobiological ideas can also be found in Robert Ardrey’s The Social 
Contract (see Note 3.2) and Desmond Morris’ The Naked Ape (Dell Publishing 
Co, New York, 1967).

3.7. Stephen D. Fretwell, in his book Populations in a Seasonal Environment 
(Princeton University Press, New Jersey, 1972) develops what he calls a theory 
of habitat suitability which is fundamentally similar to our ideas of environ-
mental favorability and density-dependent feedback. Fretwell considers the 
suitability of an organism’s habitat, or living environment, to be dependent on 
the density of the population and the basic properties of the habitat. He explains 
that the basic suitability of the habitat defines the maximum individual rate of 
reproduction and survival in that habitat when population density is very low, 
and that this is reduced in proportion to population density. His idea of basic 
habitat suitability is, therefore, equivalent to our environmental favorability.

These views are, of course, a considerable simplification of the qualities of real 
environments, which are composed of a complex of physical and biotic properties. 
However, environments can often be classified according to their favorability, 
or suitability, for particular organisms and, hence, the concept seems to be of 
practical use as well as theoretically reasonable. An example is the classification 
of forest habitats (environments) according to the types of plants, which are 
favored (see Chapter 5 of this book).

3.8. Although we have chosen not to specify the mathematical form of the density-
dependent relationship, a number of nonlinear models have appeared in the 
ecological literature. Perhaps the most popular is the exponential decay equation

R
0
 = l e-aNt-T,

where R
0
 is the per capita replacement rate (R

0
 = N

t
/N

t−1
 = R + 1), λ is the maxi-

mum per capita replacement rate (λ = R
m
 + 1), which is frequently called the 

finite rate of increase, and α is the density-dependent coefficient. This equation 
has been used most extensively by fisheries biologists and is often referred to 
as the Ricker curve after the well-known fisheries ecologist W. E. Ricker (e.g., 
see his monumental monograph “Stock and Recruitment” in the Journal of the 
Fisheries Research Board of Canada, vol. 11, p. 559, 1954). The equation can 
also be written in terms of carrying capacity

R
0
 = l 1–Nt-T / K

and can also be generalized to provide a wider range of behavior, following the 
ideas of M. E. Gilpin and F. J. Ayala (Proceedings of the National Academy of 
Science USA, vol. 70, p. 3590, 1973), by the addition of another parameter
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R
0
 = l 1–(Nt-T / K)q

Some other models, which are commonly used are due to J. B. S. Haldane 
(New Biology, vol. 15, p. 9, 1953),

R
0
 = l N-b

t-1.

R. J. H. Beverton and S. J. Holt (“On the dynamics of exploited fish popula-
tions,” Fishery investigations, series 2, vol. 19, printed by Her Majesty’s 
Stationary Office, London, 1957),

R
0
 = (a + bN

t-1
)-1

and M. P. Hassell (Journal of Animal Ecology, vol. 44, p. 283, 1975),

R
0
 = l (1 + a N

t-1
)-b

Those wishing to investigate the dynamic properties of these various models 
should consult the paper by R. M. May and G. F. Oster (American Naturalist, 
vol. 110, p. 573, 1976).

 3.9. Ecological resilience addresses the capability of ecological systems to absorb 
shocks from external forces and, in particular, their ability to recover from 
man-made disturbances such as harvesting, pollution, dams, insecticide 
applications, etc. A resilient system will have a broad domain of attraction to 
a stable equilibrium so that it tends to return to its original condition following 
severe disturbances. Such systems are said to be robust. On the contrary, 
fragile systems have little resilience because of their constricted domains of 
attraction and even minor disturbances may precipitate movements towards 
configurations quite different from their original condition. For those inter-
ested, the concept of resilience is discussed by C. S. Holling in his article in 
the Annual Review of Ecology and Systematics (vol. 4, p. 1, 1973).

3.10. The equilibrium line can be precisely defined, of course, if the density-depend-
ent function f(N

t−T
) is known, and given a relationship between environmental 

favorability F and the maximum individual rate of increase R
m
. For instance, if we 

have our familiar linear function, R = R
m
 − sN, then from Chapter 2 we know that

K = R
m
 / s.

Assuming that R
m
 changes linearly with the favorability of the environment, 

and that R
m
 → 0 as F → 0, then we have

R
m
 = bF,

where b is the benefit of a unit increase in the favorability of the environment. 
Thus we can write



K = −bs  F

and we see that the equilibrium line is determined by the combined action of 
the environment and the self-inhibiting density-dependent interactions.

In the case of nonlinear density-dependent functions, such as the exponen-
tial relationship

R + 1 = R
m
e-sN,

we will obtain nonlinear equilibrium lines. For example, given the exponen-
tial relationship above, and transforming to logarithms, we obtain

1n (R + 1) = 1n R
m
 – sN,

where ln refers to the natural logarithm. At equilibrium we get

0 = 1n R
m
 – sK,

or

K = 1n R
m
 / s.

Assuming that the environment acts linearly on R
m
, then we can substitute bF 

for R
m
 to yield

K = 1n (bF) / s,

which will give us a relationship similar to text Figure 3.12.

3.11. These complex W-shaped equilibrium lines bear superficial resemblance and 
predict similar behavior, to the equilibrium manifolds of “catastrophe” theory, 
a branch of topology first introduced by the French mathematician Rene 
Thom in his book Structural Stability and Morphogenesis (Benjamin-Addison 
Wesley, New York, 1975). This theory deals with systems that exhibit abrupt, 
discontinuous or divergent behavior and has been applied to a number of real-
life systems, particularly by Christopher Zeeman (see, for example, his paper 
in Scientific American, vol. 234, p. 65, 1976). However, there seems to be 
considerable debate amongst mathematicians over the validity of catastrophe 
theory as applied to the natural sciences (e.g., see the papers by H. J. Sussmann 
and R. S. Zahler in Behavioral Science, vol. 23, p. 383, 1978, and by G. B. 
Kolata in Science, vol. 196, p. 287, 1977). Although the equilibrium systems 
developed in this book are based on biological arguments, and do not require 
the notions of catastrophe theory, catastrophe theorists, and particularly 
Christopher Zeeman have contributed much to our thinking.
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Part II
Systems of Interacting Populations

In the first part of this book we considered populations of a single species living 
within specific geographic boundaries. All other species, and other populations of 
the same species, were relegated to the environment of the subject population. 
Although this may be a reasonable approach when we are interested in a particular 
species living in a certain place, it is often necessary, for practical or academic rea-
sons, to consider the interactions between populations of different species occupy-
ing the same space, or between populations of the same species living in different 
places. For example, forest stands are frequently composed of several intermixed 
tree species and forest ecologists and managers are interested in the dynamics of 
these interacting populations. Likewise, the interaction between predator and prey 
populations is of interest to the ecological theorist and the practitioner of biological 
control of pests. The spatial interactions between populations of the same species 
are of particular concern when migrations lead to significant changes in population 
behavior - for instance, in the spread of a pest insect or of disease epidemics.

In this part of the book we will examine interacting population systems using the 
basic models and analytical methods developed in Part I. We will first look at inter-
actions between populations of two species living in the same place (Chapter 4), 
then interactions between populations of the same species living in different places 
(Chapter 5) and, lastly, communities composed of many interacting populations 
(Chapter 6).



4.1. Population Interactions

Populations of two different species that coexist within the same geographic area 
may be viewed as two separate population systems, which interact with each other 
through their common environment. In this way, the numbers of one population 
modify the favorability of the environment for the other (Figure 4.1). This interac-
tion creates an additional feedback loop, shown as a bold line in the figure, which 
passes through both population systems. This loop may be positive or negative 
depending on the signs of the interspecific interactions.

Different species may interact with each other in a number of ways, depending on 
whether their presence improves (+), detracts from (−), or has no effect on (0), the 
environment of the other species. The combined interactions can be specified in an 
interaction matrix, which describes all possible interactions between two species:

Chapter 4
Interactions Between Two Species

From this matrix we see six types of interactions that may occur between any 
pair of species. These are usually termed mutualism or symbiosis (+ +), commen-
salism (+0), predation (+ −), competition (− −), amensalism (−0), and indifference 
(00). However, for our purposes these may be reduced to three basic kinds of inter-
actions (see also Note 4.1):

1. One or both species supply a commodity or resource, which is useful to the other 
but is of no use to its own population. Thus, although the donor species improves 
the environment for the recipient it does so at no cost to itself. We will call such 
interactions cooperative and they will include mutualism (+ +) and commensal-
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ism (+0). Examples are ants, which tend aphid colonies for the honeydew they 
secrete, and in return protect them from predators; and dung beetles, which feed 
on cattle droppings and thereby increase the area available for grass to grow.

2. One species supplies a resource for the other but, in so doing, its own population 
suffers. Such interactions involve the feeding of herbivores, predators, parasites, 
and diseases on populations of their prey. These are grouped under the broad 
title of predator-prey interactions (+ −).

3. One or both species utilize a commodity or resource, which is needed by the 
other. The result of this is usually competition (− −) between the species for the 
common resource. A rather rare phenomenon that falls within this category is 
amensalism (−0), which exists when both species require the same resource but 
one is excluded from competing for it by some act of the other. Examples of 
amensalism can be found in certain plants that secrete toxic substances into the 
soil, preventing other species from invading the site. However, we will consider 
these under the title of competitive interactions.

4.2. Cooperative Interactions

If we examine the interaction feedback loop of Figure 4.1, we will find that coop-
erative interactions between species will create an overall positive feedback effect; 
an increase in the density of species A improves the environment of B, and this 
causes an increase in B’s individual rate of increase and population size, which then 
improves the environment of A and, eventually, its population size, and so on. This 

Fig. 4.1 A general model for two interacting species, A and B, where the numbers of the first 
species, N

a
, affect the favorability of the other species’ environment, F

b
, and vice versa; the G’s 

indicate genetic properties of the two species



feedback loop can be written N F N F Na b b a a
+ + + +⎯ →⎯ ⎯ →⎯ ⎯ →⎯ ⎯ →⎯ ,  and we see 

that the product of all these positive interactions produces an overall positive feed-
back loop.

Because the density of one species can be interpreted in terms of environmental 
favorability for the other, we should be able to evaluate cooperative interactions 
using reproduction planes. Assuming that all other environmental conditions are 
constant, then we would expect the favorability of the environment for one species 
to be proportional to the population density of the other, and the equilibrium lines 
should appear as shown in Figure 4.2A,B. These lines are drawn so that they inter-
cept the axis of each species at a positive density, which means that both species 
can exist in the absence of the other; that is, they are not completely dependent on 
each other, as is the case in the ant-aphid example. The intercept K, therefore, rep-
resents the saturation density of each species in the absence of the other, while the 

Fig. 4.2 (A and B) Separate reproduction planes for two cooperating species, A and B, respec-
tively, where F is the environmental favorability axis as affected by the density of the other 
species, K is the saturation density in the absence of the other species, Q is the marginal benefit 
of the cooperator, and (+) and (−) indicate the zones of population growth and decline. (C) The 
combined reproduction plane produced by superimposing B’s plane on top of A’s (see Note 4.3), 
where both species grow in the (++) zone, A grows and B declines in the (+−) zone, and B grows 
and A declines in the (−+) zone. The equilibrium line for each species is indicated by E. The 
particular trajectory (S,V, …) is the result of consecutive changes in the density of each species 
from S to U and S to T, etc., over each time increment
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slope of the line Q reflects the improvement to the environment produced by adding 
a single cooperator. In effect, the slope of the line is the marginal benefit provided 
by the cooperating species to the reproduction and survival of the other species (in 
Note 4.2 this slope is shown to be defined by p/s, where p is the benefit derived 
from each cooperator and s is the intraspecific inhibitory effect).

The reproduction plane of species B can now be superimposed on that of A by 
rotating it clockwise through 90° and then inverting it (see Note 4.3). When we do 
this we obtain a combined reproduction plane, which is divided into three regions 
where (1) both populations grow (+ +), (2) species A grows but B declines (+ −), 
and (3) species B grows but A declines (− +). The dynamics of this interacting sys-
tem can be evaluated by starting at any position on the reproduction plane and cal-
culating the direction that the system will move over a number of time increments. 
For example, from point S in Figure 4.2C population A will grow, say to T, while 
B will decline, say to U, and the net result will be a movement from S to V. After 
another similar change both populations will be in their zone of increase and they 
will continue to grow ad infinitum. Similar dynamic trajectories can be calculated 
from any starting point on the combined reproduction plane.

We can see from Figure 4.2C that the interaction produces perpetual growth 
because the equilibrium lines run parallel to each other. However, if we decrease 
the slope, Q, of one or both of these lines, then they will intersect to produce a sta-
ble equilibrium point (Figure 4.3A). As the product of Q

a
 and Q

b
 must be unity 

when the lines are parallel, then the criterion for a stable coexistence between the 
two cooperators is Q

a
Q

b
 < 1 (see also Note 4.2, where we show that a stable equi-

librium will occur when the product of the inhibitory effect of each species on its 
own rate of increase is greater than the product of the beneficial effect of coopera-
tion). See also the disk that comes with this book for examples of the dynamics of 
cooperative systems.

The case of commensalism (+ 0), where one species is completely indifferent to 
the other, reveals itself as a special case of cooperation. For example, suppose that 
species A is completely dependent on resources supplied by B but that B is indif-
ferent to A. The equilibrium line for A will rise in direct proportion to the popula-
tion density of B while B’s line will remain constant, provided that its numbers are 
limited by other environmental factors. As Q

b
 is zero in this system it fulfills the 

criterion for stable coexistence as shown in Figure 4.3B. The equilibrium is, of 
course, enforced by the self-limitation of species B.

Up to this point we have assumed that the equilibrium lines are linearly related 
to the density of the other species. However, we should suspect that this would 
rarely be true in nature. Perhaps a more reasonable reproduction plane is that shown 
in Figure 4.4A. In this case the reproduction and survival of one species increases 
with the density of the other until competition for a diminishing environmental 
resource brings growth to a halt at a new saturation density, K′. For example, the 
population may be limited at its lower saturation density, K, by food shortage, and 
the addition of cooperators to its environment increases this food supply. However, 
as the density of the population rises, another resource (e.g., nesting places) may 
run out and limit the population at K′. When reproduction planes of this kind are 



Fig. 4.3 (A) Superimposed reproduction plane similar to Figure 4.2C except that the slope of B’s 
equilibrium line has been decreased, and (B) superimposed reproduction plane for a commensal 
A, which is completely dependent on B, while B is indifferent to A but is limited by other 
environmental factors

Fig. 4.4 (A) Reproduction plane for a species whose environment is improved by a cooperator 
until its density becomes limited by other factors at K ′. and (B) the superimposed reproduction 
plane for two such species. (C) Reproduction plane for a species whose environment is only 
improved after its cooperator reaches a fairly high density and is also limited by other environ-
mental factors, and (D) the superimposed plane for two such species
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superimposed we obtain a stable equilibrium near to the higher saturation densities 
of both species (Figure 4.4B). Once again this equilibrium is enforced by the self-
limitation of the cooperators.

Another variation we might expect to find in nature is illustrated in Figure 4.4C. 
Here, the cooperator has very little influence on the environment until it reaches a 
fairly high density, after which the environment is improved until self-limiting 
forces come into play. It is interesting that the superimposition of such reproduction 
planes may create three equilibrium positions, two of which are stable (Figure 
4.4D). The cooperating populations may coexist at very low or very high densities 
depending upon which side of the unstable equilibrium they start.

In summary, our analysis has demonstrated that equilibrium between two coop-
erating species is only possible if the combined benefits derived from the coopera-
tive interaction are less than the combined inhibitory effects of each species on their 
own rates of increase. In other words, the cooperative interaction is basically unsta-
ble and stable coexistence is only made possible by the internal negative feedback 
mechanisms of one or both populations.

4.3. Competitive Interactions

When two species compete for a common resource they negatively affect the favo-
rability of each other environment and the interaction loop of Figure 4.1 becomes 
N F N F Na b b a a

− + − +⎯ →⎯ ⎯ →⎯ ⎯ →⎯ ⎯ →⎯ . This forms an overall positive loop 
because, if you remember, the product of two negative interactions yields a positive 
effect (Chapter 1). Hence we should suspect that competitive interactions are gener-
ally unstable.

In Figure 4.5A,B the equilibrium lines have been drawn for two competing spe-
cies in the following manner: For each species there will be a saturation density K, 
which is attained in the absence of the other species. However, for the addition of 
each competitor this density will be reduced in proportion to the competitive 
strength of the competing species as indicated by the slope of the equilibrium line 
W. This slope then represents the marginal cost to the reproduction and survival of 
the species caused by adding a single competitor, or the degree to which the favo-
rability of the environment is reduced by this action. Naturally, when the marginal cost 
is zero (W = 0), then there is no competition for resources and the population will 
equilibrate at its carrying capacity K. However, when W > 0 then the population 
will equilibrate at lower and lower densities as the density of its competitor 
increases until, at some high density C, the equilibrium will be reduced to zero. In 
other words, the favorability of a species’ environment will be zero at some very 
high density of its competitor; but, as the competitor decreases from this critical 
density C, higher and higher equilibrium densities will be possible until, when the 
competitor is absent, the species will reach its saturation density K.

The equilibrium lines for the two species can be superimposed by inverting one 
and then rotating the other clockwise through 90° (Figure 4.5C) (see also Note 4.3). 



In this particular example we can show, by plotting a trajectory or two, that the sys-
tem will equilibrate at K

b
, by which time species A will have become extinct. We 

notice, as expected, that the interaction between the two species is unstable.
Now suppose we increase the saturation density of species A in Figure 4.5 so 

that K
a
 > C

a
; in doing this we have also increased the marginal cost of species B 

because W
b
 is now larger. We now find that the two equilibrium lines intersect to 

create an equilibrium point (Figure 4.6A). However, this equilibrium also turns out 
to be unstable because, when the system is displaced from it, it moves towards K

a
 

or K
b
 depending on the direction of the initial displacement (the student is encour-

aged to prove this by plotting trajectories on Figure 4.6A).
In both of our examples so far, one species will always dominate the other and 

eventually drive it to extinction. This is usually termed competitive exclusion and it 
seems to be a fairly common phenomenon in nature; for example, the succession of 
species that dominate, in their turn, dynamic plant communities (this will be 

Fig. 4.5 (A and B) Reproduction planes for two competing species, A and B, respectively, where 
the density of one detracts from the favorability of the other’s environment; K represents the saturation 
density of each species, W the marginal cost of the competitor, C the critical density of one species 
which reduces the favorability of the other’s environment to zero, and (+) and (−) the respective 
zones of population growth and decline. (C) The superimposed reproduction plane (see Note 4.3 
for how it was obtained) with equilibrium lines, E, and a particular dynamic trajectory
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 discussed below in more detail). Two further instances of competitive exclusion are 
illustrated in Figure 4.7. The first shows how a series of three parasites introduced 
into Hawaii to control a fruit pest competed for this common food supply until only 
one remained. The second example shows how a weaker competitor, the fir 
engraver beetle, which is first to colonize a source of food in a particular locality, 
is eventually displaced by other bark beetle species.

Now let us return to Figure 4.5 and see what happens when we increase C
b
 so 

that it is greater than the saturation density of species B; that is, K
b
 < C

b
 and K

a
 < C

a
 

(Figure 4.6B). Once again the equilibrium lines intersect each other, but this time 
the equilibrium point turns out to be stable with both species persisting in the envi-
ronment (the student should demonstrate this by plotting trajectories on Figure 
4.6B). Thus, competitive coexistence is only possible under the conditions that 
K

a
 < C

a
 and K

b
 < C

b
. Now as the saturation density K is dependent on the self-limiting 

effect of the species (i.e., the intraspecific competitive component) while C depends 
on the strength of the interspecific struggle, then this result means that coexistence 
is only possible when the repressive effect of each species on its own cohorts is 
greater than that on its competitor (this result is derived more formally in Note 4.4). 
This reinforces our conclusion that competitive interactions are inherently unstable 
and that stability can only be enforced by the self-regulatory mechanisms of the 
competing species. See also the disk that comes with this book for examples of 
the dynamics of competitive systems.

Although long-term data demonstrating the competitive coexistence of species 
living under natural conditions are difficult to find, a number of elegant laboratory 
experiments have been performed (e.g., Figure 4.8). In this remarkable experiment 
we clearly see that the populations attain the same equilibrium levels regardless of 
their initial starting conditions. It also illustrates one of the fundamental principles 
of competition – the advantage of numbers. In Figure 4.8A the more successful 
competitor (the one that equilibrated at the higher density) started out at a higher 
density and both populations grew rapidly until they reached equilibrium in about 
20 weeks. In the second experiment, however, the weaker competitor was given the 
advantage of numbers and it was able to maintain a high population density for 

Fig. 4.6 Superimposed reproduction planes for two competing species when (A) K
a
 > C

a
 and 

K
b
 > C

b
, and (B) K

a
 < C

a
 and K

b
 < C

b



some time before its competitor was able to exert its dominance. Because of this, 
the equilibrium state was not established for more than 40 weeks. These experi-
ments demonstrate that a weak competitor can temporarily hold an area, in the face 
of dominant competitors, by occupying the area before the other species arrive.

Fig. 4.7 (A) Competitive exclusion of two parasites, introduced into Hawaii to control a fruit fly, 
by a third species which was introduced last (redrawn from H. A. Bess, R. van den Bosch, and 
F. H. Haramoto, Proceedings of the Hawaii Entomological Society, vol. 17, p. 367, 1961). (B) Exclusion 
of the fir engraver beetle from fir trees by other bark beetle species that compete with it for food 
(redrawn from A. A. Berryman, Canadian Entomologist, vol. 105, p. 1465, 1973)

Fig. 4.8 Competitive coexistence between two species of grain beetles living in a fixed quantity 
of wheat [redrawn from A. C. Crombie, Proceedings of the Royal Society (Section B), vol. 133, 
p. 76, 1946]
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4.3.1. Nonlinear Competitive Interactions

We should suspect that linear competitive relationships, such as those in Figures 4.5 
and 4.6, would rarely be seen in nature. For example, large ungulates like elk and 
deer utilize a variety of browse plants, and different species usually have different 
food preferences. Thus, competition between species should be rather inconsequen-
tial as long as their populations remain small, because different food plants will be 
eaten. However, when their populations become large they may be forced to eat less 
preferred plants, which may be a major food source for the other species, and com-
petition will intensify. Because the effects of competition become stronger as the 
density of the other species rises, the slope of the equilibrium line will increase in 
direct relationship to the density of the competing population, and the reproduction 
plane will appear as shown in Figure 4.9A. Provided that the conditions for coexist-
ence are met (i.e., that K

a
 < C

a
 and K

b
 < C

b
), then these competitors will come into 

equilibrium at population densities very close to their respective saturation levels 
(Figure 4.9B).

We may also find situations where competition is more intense at low population 
densities (Figure 4.9C). This may occur when two species utilize the same resource, 

Fig. 4.9 (A) Reproduction plane for a species that is more severely affected by high densities of 
its competitor; (B) the superimposed reproduction plane for two such species. (C) Reproduction 
plane for a species that is more severely affected by low densities of its competitor (see Note 4.3 
for its construction); (D) the superimposed reproduction plane for two such species



but resort to different utilization patterns if forced to by intense competition. 
Equilibrium lines with this general form have been observed in experimental fruit 
fly populations competing for a common food supply in culture flasks (Note 4.5). 
In this particular experiment the slope of the equilibrium line decreased with 
increasing density of the competing species; perhaps living with a few flies makes 
life difficult, but living with a few more when a multitude is already present makes 
little difference. When species with this kind of reproduction plane interact they 
will come into equilibrium at rather low densities, provided, of course, that the 
conditions for coexistence are met (Figure 4.9D).

The shape of the equilibrium line is affected not only by the competitive interac-
tion between the species, but also by the intrinsic density-dependent processes act-
ing on each population. This is demonstrated in Note 4.4, where it is shown that the 
marginal cost of competition (the slope of the equilibrium line) is W = c/s, where c 
is the effect of the competitor, and s the intraspecific effect. Hence, the shape of the 
equilibrium lines in Figure 4.9A,C could also be affected if intraspecific competi-
tion changes with population density (see also Note 4.5). Under these conditions 
we can imagine the interaction between species that have differently shaped repro-
duction planes. For example, the interaction between the planes of Figures 4.9A 
and C is shown in Figure 4.10. Given the proviso for coexistence, such interactions 
will equilibrate with one species at a high population density and the other at a low 
density (Figure 4.10A). In addition, we may also find systems with more than one 
equilibrium state. For instance, if we increase the carrying capacity of species A in 
Figure 4.10A so that K

a
 > C

a
, then we will obtain the system shown in Figure 4.10B. 

Here we find a stable equilibrium with both species present but B being much more 
abundant, an unstable equilibrium close to C

a
, and a stable equilibrium with species 

A alone (i.e., K
a
). This system is particularly interesting because species A can be 

attracted to two equilibrium levels, depending upon which side of the unstable 
threshold the trajectory begins. This result has implications, which should not 
escape the population manager. For instance, suppose the system is at K

a
 with spe-

cies A only present, and we begin harvesting this species to levels below C
a
. 

Fig. 4.10 Interactions between competing species with different forms of reproduction plane: 
(A) Coexistence when K

a
 < C

a
 and K

b
 < C

b
; (B) two stable equilibria produced when K

a
 > C

a
 and 

K
b
 < C

b

4.3. Competitive Interactions 105



106 4 Interactions Between Two Species

Although species B will be absent at first, once a few individuals obtain a toehold 
their population will grow until the system equilibrates with B the dominant com-
ponent, even if the cropping of species A is discontinued. Conversely, if we now 
switch to harvesting species B, then A will be able to grow slowly and, under pro-
longed and heavy exploitation of B, it may cross the unstable threshold near C

a
, and 

eventually dominate the system with species B becoming extinct.
These results may help us to explain why certain heavily exploited species do 

not seem to recover to their normal levels when harvesting is discontinued – a 
problem which seems particularly acute in the history of herring, sardine, pilchard, 
and anchovy fishing (see Note 4.6). The relationship between overexploited and 
declining sardine stocks in California, South Africa, and Japan, and the subsequent 
rise of the anchovy fisheries is particularly intriguing (e.g., Figure 4.11). However, 
these observations on natural populations do not necessarily imply that double 
equilibria, as shown in Figure 4.10B, are present in the system. Even if the system 
has but a single stable equilibrium, such as that in Figure 4.10A, the overexploited 
stock may take a long time to re-establish dominance in the face of large numbers 
of its competitor. The advantage of numbers is, as we have seen, of considerable 
significance in systems of competing species. In addition, we will find later that 
there are other explanations for systems with two or more equilibria.

4.3.2. Competition in Variable Environments

Our analysis of systems of competing populations has, of necessity, been conducted 
under the explicit assumption that all other environmental conditions remain 

Fig. 4.11 Growth and collapse of the South African sardine fishery and the following rise of the 
anchovy catch (drawn from data by G. I. Murphy; see Note 4.6 for reference)



 constant – that is, all factors other than the densities of the competing species. In 
this section we will briefly look at the behavior of the system when this assumption 
is relaxed. We will refer to the environment, excluding the two species, as the 
shared environment, which will include the disputed and undisputed resources, 
weather, predators, diseases, etc.

We would expect different shared environments to affect the reproduction and 
survival of two species in different ways and this will, of course, affect the satura-
tion density of one species relative to the other. For example, if Figure 4.9B repre-
sents a stable interaction between two species occupying a particular shared 
environment, then a change in that environment to favor species A may raise its 
saturation density until an unstable condition is attained when K

a
 > C

a
. This is illus-

trated in Figure 4.12, where we see that the two populations coexist until the satura-
tion level of A exceeds the critical density, C

a
, after which B is excluded from the 

environment.
Now our model (Figure 4.1) also includes a feedback loop representing the 

effect of a population on the properties of its own environment, an effect that regis-
ters in the rate of increase of its own membership. Dense populations will generally 
reduce the favorability of the shared environment for their own species, but the 
effect on the competing species may be positive, zero, or negative. Under the condi-
tion that environmental changes induced by one species are much more detrimental 
to its own species than to its competitors, we can explain the phenomenon of 
ecological succession.

Fig. 4.12 Effect of changes in the shared environment on the interaction between two competing 
species, where F

a
 is the favorability of the environment to species A, and F

b
 is assumed to remain 

constant. The trajectory shows the path taken by the equilibrium point as the environment slowly 
changes to favor species A
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Suppose we have a shared environment, which is very favorable for species A 
so that another species B is excluded (i.e., we are in the foreground of Figure 4.13). 
However, if A causes fairly permanent changes in the environment which are unfa-
vorable to its own members but which favor species B, then the saturation level of 
A will decline while that of B will increase. If both saturation levels cross their 
respective critical densities, we will obtain the system shown in Figure 4.13. We 
can see that, as the shared environment gradually changes in favor of B, the equi-
librium density of A decreases until, after the point X, stable equilibria are possible 
with species B present in the system. At first B will only be present in very small 
numbers but, as the environment continues to change in its favor, its status relative 
to A will continue to improve. We can see that both species continue to coexist as 
long as the saturation level of B remains below its critical density. After this point, 
Y, species A will eventually be excluded, and the succession of A by B will be 
complete.

Dynamic scenarios, such as that described above, are very common in the suc-
cession of plant communities, and probably just as common, although not so com-
monly observed, in animal communities. Pioneer species, for example lodgepole 
pine, colonize environments denuded by fire and other natural disasters. As these 
denuded environments are favorable for their reproduction and survival, the pine stands 
may become very dense. However, once the pioneer stand is established, the 
environment changes drastically. In particular, so little light penetrates the dense 

Fig. 4.13 The dynamics of succession: The relative favorability of the shared environment for 
species B over A, F

b/a
, changes slowly over time causing the equilibrium of the two species inter-

action to move along the trajectory K
a
, X, Y, K

b
, where species A outcompetes B on the section K

a
, 

X, both species coexist on the section X, Y, and species B replaces A on the section Y, K
b



canopy that the survival of seedlings is reduced almost to zero – pioneer species, 
being adapted to colonizing open ground, are not usually very tolerant of shade. 
However, other more shade-tolerant species, such as firs and spruces, will slowly 
establish themselves in the understory. At first they will only be present in small 
numbers but, as the parent pines begin to die and as the successors reach reproduc-
tive maturity, their numbers will increase rapidly. Eventually the shade-intolerant 
pioneers, being unable to reproduce under the dense canopy, will disappear and the 
succession will be complete.

4.3.3. Strategies of the Competitor

Competition, whether within a species or between species, is a fundamental natural 
force, which molds the character of species and, in some (e.g., Homo sapiens), the 
character of individuals also. Different species have evolved different ways of sur-
viving in the presence of their competitors, but three basic strategies are usually 
encountered - the strong specialist, the generalist, and the opportunist. The most 
obvious strategy, of course, is to become a strong competitor and either drive out or 
exclude rivals, or seize the disputed resources by aggression, trickery, or other spe-
cialized behavior – the “force of arms” strategy. Such strong competitors will tend 
to be specialists, concentrating on particular resources and using specialized weap-
ons and behavior. The strategy of the strong competitor results in a strong negative 
impact on the rival species, which – in effect – tends to suppress the parameter C. 
For example, consider the system in Figure 4.6B and imagine that species B devel-
ops an advantage over its competitor, so that C

b
 is depressed towards K

b
. The equi-

librium point will then shift in favor of species B. If the advantage is great enough 
then C

b
 may be reduced below K

b
, in which case B will eventually displace its rival 

from the system (e.g., Figure 4.5C).
Amensalism (−0), where one species has a negative effect on another but is itself 

unaffected, now reveals itself as a peculiar case where one species has absolutely 
no competitive ability. Thus, the equilibrium line of the amensal will never inter-
cept the axis of its competitor because it remains at K irrespective of the competi-
tor’s density. Interactions with an amensal, B, may stabilize with both species 
present if K

b
 < C

b
, but the amensal will always win when K

b
 > C

b
.

The strategy of the generalist is to avoid competition by utilizing a variety of 
resources. The “jack of all trades,” with his wide range of alternative resources, can 
switch quickly from one to the other as the pressures from his competitors change. 
However, even generalists usually have different preferences from their competitors. 
This is the first evolutionary step toward specialization, as preference for one resource 
tends to lead to the selection of characteristics that confer an advantage in obtaining 
that resource. Hence the classic examples of character displacement amongst closely 
related species competing for similar resources (e.g., Darwin’s finches).

The strategies of the strong competitor and generalist enable them to persist, in 
the face of their competitors, at population densities close to their saturation levels 
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(e.g., Figures 4.9B and 4.10A). Because of this they often have relatively low maxi-
mum rates of increase, and thereby avoid the problem of unstable behavior at equi-
librium (see Note 4.7). On the other hand, the strategy of the opportunist takes 
advantage of a high maximum rate of increase and a migrant life style to outwit the 
opposition. The opportunist uses a “get in and get out” approach as well as the 
advantage of numbers to obtain a share of the disputed resources. His migrant ways 
give him the edge in the race to find new resources, and his high reproductive rate 
enables him to use them up before stronger competitors arrive, or to hold them 
temporarily through the advantage of numbers.

Opportunistic species are rarely present in any one place for an extended period 
of time, and so instability at equilibrium created by their high reproductive rates is 
less of a problem to them. In a way, opportunists are also specialists that are special-
ized at living in highly variable environments. For example, a variation of the 
opportunistic way of life is the pioneer who quickly occupies a new environment, 
often one that has been denuded of life by a catastrophe of nature (or man if you 
consider him unnatural), and holds it against competitors through the advantage of 
numbers. Even if the rivals gain entrance it may take a long time to wrest the 
resources from the well-established pioneers. By that time another natural catastro-
phe may have paved the way for a repeat performance. The strong competitor and 
generalist, on the other hand, are more adapted to living in stable environments 
where their competitive strategies are of greater advantage.

4.4. Predator-Prey Interactions

The subject of trophism, especially predation has fascinated scientists over the 
ages, and more experimental and theoretical research has been done on predator-
prey interactions than on any other single ecological process. This preoccupation is 
not surprising because man himself has deep predaceous instincts, perhaps being 
the most efficient predator ever to have appeared on the face of the earth. In addi-
tion, predator-prey systems are noted for their interesting and varied dynamic 
behavior, which is sometimes difficult to interpret and understand.

If we examine the system defined by Figure 4.1 we see that the predator-prey inter-
action creates an overall negative feedback loop, N F N F Na b b a a

+ + − +⎯ →⎯ ⎯ →⎯ ⎯ →⎯ ⎯ →⎯  
where the subscript a holds for prey and b for predator. The loop has a single negative 
link representing the effect of predator density on the favorability of the prey’s environ-
ment, which gives it its overall negative feedback effect. This quality should give the 
interacting system steady-state equilibrium characteristics without the imposition of 
other regulatory mechanisms, something, which we have not encountered before in our 
discussion of population interactions. This conclusion is, perhaps, intuitively obvious 
because predators must be limited by their prey and will, in turn, limit the abundance of 
their prey. We can see this from Figure 4.1: an increase in the density of A, the prey, 
raises the favorability of the environment for B, the predator, causing an increase in its 
rate of increase and population size. The increased predator density then reduces the 



favorability of the prey’s environment, its rate of increase and population density, which 
in turn reduces the favorability of the predator’s environment, and so on.

When we constructed the single-species models in Chapters 2 and 3, we discov-
ered that the most interesting dynamic patterns (steady states, oscillations, cycles) 
were produced by the action of negative feedback loops. We will find that predator-
prey interactions are equally interesting, and that understanding predation will give 
us a clearer picture of the single-species models.

Let us start by deducing a simple reproduction plane for a prey species. 
Obviously, the favorability of the prey’s environment will be inversely related to the 
density of the predator, and the equilibrium line may look like that in Figure 4.14A. 
When the density of the predator is zero, we would expect the prey to equilibrate at 
its carrying capacity K

a
. For each predator added, however, the survival of the prey 

will be reduced by some amount, which – in line with our previous reasoning – we 
can call the marginal cost of predation W

b
 (this is represented by the slope of the 

line). Given that W
b
 > 0, and that the system is linear as in Figure 4.14A, then we 

Fig. 4.14 Reproduction planes for a prey species (A), where K
a
 is the carrying capacity in the 

absence of predation, W
b
 is the marginal cost of predation, and P

b
 is the predator density which 

drives the prey to extinction; and for a predator (B), where P
a
 is the minimal prey density needed 

to sustain a predator population, and Q
a
 is the marginal benefit of the prey. (C) The superimposed 

reproduction plane (see Note 4.3 for its construction), showing predator and prey equilibrium 
lines, E

b
 and E

a
, and a particular dynamic trajectory
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will find a particular predator density P
b
, which reduces the equilibrium density of 

the prey to zero (at this point prey are eaten faster than they can reproduce them-
selves). By this time you may have the feeling that we have done all this before, 
and you will be right, for the prey equilibrium line is quite similar to that of the 
competitor. This should not be surprising because predation, like competition, is a 
cost that must be borne by the species being preyed upon. In a way, we can think 
of a predator as actually competing with its prey, because both species require 
the same resource – the energy stored in the prey’s body – in order to survive and 
reproduce.

Let us now turn our attention to the reproduction plane of the predator and, for 
the present, assume that only one species of prey is eaten; that is, it is a specific 
predator. Naturally, when the prey is absent from the environment the predator will 
not be able to exist for long because it has no food. In fact we might also suspect 
that the predator population will only be able to persist after the prey has reached 
some critical density P

a
 (Figure 4.14B). Below this level the prey are too sparse and 

hard to find to sustain the predators. However, above P
a
 each additional prey added 

will improve the environment for the predator and, therefore, the slope of the equi-
librium line Q

a
 represents the marginal benefit of the prey to the reproduction and 

survival of the predator. Note that the predator reproduction plane is very similar to 
that of a cooperator. In a way, the prey is cooperating with its predator by being 
there for it to eat, although it is certainly not a voluntary form of cooperation.

We can superimpose the two reproduction planes by rotating the predator’s 
clockwise through 90°, and then the whole thing can be inverted so that the origins 
are justified to the lower left-hand corner (Figure 4.14C; see also Note 4.3). The 
first thing we notice is that the two equilibrium lines intersect to create an equilib-
rium point for most values of their parameters. In fact, the only condition for an 
equilibrium point to exist is that K

a
 > P

a
; in other words, the saturation density of 

the prey must be larger than the minimum density required to sustain a predator 
population. This, of course, is an obvious requirement. As we can see, the equilib-
rium lines run in opposite directions (one runs right-down, the other one runs right-
up), in marked contrast to those of cooperators and competitors, which run in the 
same directions (both run right-up in cooperative systems and both run right-down 
in competitive systems) and only intersect over fairly narrow ranges of their 
parameters.

The dynamics of the predator-prey interaction can be evaluated as we have done 
previously and, if we do this with the system depicted in Figure 4.14C, we obtain 
a trajectory that spirals in to a stable equilibrium point (the student is encouraged 
to draw several of these trajectories; see Note 4.3). When we plot the dynamics of 
the two populations in time series we obtain the trajectories shown in Figure 4.15A. 
As we can see, the populations cycle around their equilibrium levels, with the 
predator following the prey, until they reach their steady states after a series of 
damped cycles.

Although predator-prey systems invariably possess an equilibrium point it needs 
not necessarily be stable. As we have seen, the system cycles towards equilibrium 
and this may lead us to suspect that cycles of increasing amplitude may occur under 



certain conditions (e.g., Figure 4.15B). In order to investigate the stability of preda-
tor-prey interactions we will need to examine the parameters in a little more depth.

First consider the predator reproduction plane under the condition that the prey 
population remains constant and above the critical density P

a
. The predator popula-

tion will eventually equilibrate at a characteristic density, provided that the interaction 
is stable. However, we might ask: “What determines the density of the predator popu-
lation living in this constant food supply?” Well, it seems obvious that a predator that 
consumes many prey in order to produce a single offspring will not be able to persist 
at as high a density as one that requires only a few prey. Hence, the equilibrium den-
sity of the predator depends on its efficiency at converting prey into predator off-
spring. As the equilibrium density is a function of the slope of the line, or the marginal 
benefit of the prey Q

a
, then this parameter is related to the conversion efficiency of 

the predator. In other words, the benefit of a single prey added to the environment is 
measured in terms of the predator offspring it can produce and support.

Now let us look at the other predation parameter, the minimal density of prey 
needed to support a predator population P

a
. It seems reasonable that predators that are 

very efficient at hunting and capturing their prey will be able to persist at rather low 
prey densities and, therefore, P

a
 will be relatively small. In contrast, the equilibrium 

Fig. 4.15 (A) Time-series simulation of the predator (o) and prey (•) populations governed by the 
system illustrated in Figure 4.14C, and (B) the same interaction when the slope of the predator 
equilibrium line, Q

a
, is increased to create an unstable interaction
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line for inefficient hunters will intercept the prey axis at much higher densities. Thus, 
the overall form of the predator equilibrium line, as determined by Q

a
 and P

a
, seems 

to be related to the efficiency of the predator in seeking out and capturing prey and in 
converting them into predator offspring (see also Note 4.8).

When we make the predator very efficient, by increasing the slope of the equilib-
rium line, we will find that the equilibrium point becomes less stable and that even-
tually we will get cycles of increasing amplitude as illustrated by Figures 4.15B and 
4.16A. It should be noted, however, that stability is affected by time delays as well 
as by the efficiency of the predator. In fact, when there are no time delays in the 
response of the predator to changes in the density of its prey, then the system will be 
stable regardless of the predator’s efficiency (see also Note 4.9). On the other hand, 
when the time delay is long we may find unstable interactions involving fairly inef-
ficient predators. The subject of time delays in the predator-prey interaction is 
extremely important and will occupy our attention later in this chapter.

In the meantime, let us turn our attention to the prey reproduction plane and imag-
ine how the slope of the equilibrium line, or the marginal cost of predation, will 
change under a constant level of predation. First, the marginal cost of predation 
should be related to the number of prey that are removed per unit of time, and also to 
the relief that the survivors obtain by the removal of their competitors; that is, by 
removing some individuals, the predators decrease intraspecific competition for 
resources and increase the reproduction and survival rates of the survivors. The rate 
at which prey are removed by a particular species of predator depends, to a large 
extent, on their vulnerability to be attacked by that predator. On the other hand, the 
relief gained by the survivors depends on the intensity of the struggle for resources; 
that is, on the density-dependent coefficient s (see Chapter 2). Hence, we might 
expect that the marginal cost of predation is directly related to the vulnerability of the 
prey and inversely related to the strength of its intraspecific interactions (in Note 4.9 
we show that W

b
 = v/s, where v is a measure of the prey’s vulnerability to be attacked).

The second prey parameter, P
b
, is the density of predators, which can drive the 

prey population to extinction. Once again, we would expect this critical point to be 
related to the vulnerability of the prey. However, because intraspecific competition 

Fig. 4.16 Unstable predator-prey interactions resulting when predators are too efficient (A) or the 
prey too vulnerable to being attacked (B)



is negligible near to the extinction point, the survivors would not be expected to 
gain much advantage by the removal of their cohorts. On the other hand, we would 
expect a prey population with a high maximum individual rate of increase to have 
a greater chance of persisting in the face of a constant rate of predation than one 
with a low maximum individual rate of increase. Thus, the extinction threshold, P

b
, 

should be directly related to the maximum individual rate of increase of the prey 
(R

m
 in Chapters 2 and 3) and inversely to its vulnerability to attack, v (we show, 

mathematically, that P
b
 = R

m
/v in Note 4.9).

The effect of increasing the vulnerability of the prey, and hence the marginal 
cost of predation, is illustrated in Figure 4.16B, when compared with Figure 4.14. 
Once again we see in this Figure that the predator-prey interaction is destabilized if 
the prey become too vulnerable to being attacked, given that time delays are present 
in the system.

In addition to the effect on stability, the slopes of the predator and prey equilib-
rium lines also determine the relative density of the two species at equilibrium 
(Figures 4.14 and 4.16). As we would expect, the system equilibrates at high prey 
and low predator densities when inefficient predators attack prey with good escape 
or defense mechanisms. Such conditions also favor stable interactions and, as a 
result, we usually find stable systems when the prey population is much larger than 
that of the predator. However, we will see later that stable interactions between effi-
cient predators and vulnerable prey are possible if the predators limit their own pop-
ulation size, or if the prey becomes very hard to catch when their density is low.

4.4.1. Nonlinear Predator-Prey Interactions

We have seen that the predator-prey interaction is quite sensitive to the slopes of the 
respective equilibrium lines. However, there is no reason to suppose that these 
slopes are always constant so that we get linear equilibrium lines as in Figures 4.14 
and 4.16. Some predators, for example, are very efficient at seeking out and captur-
ing their prey, but are inhibited when their populations become very dense because 
they interfere with each other’s hunting activities (e.g., insect parasitoids; see Note 
4.10). The equilibrium line for such a predator may be very steep at first, but its 
slope will decrease in direct relationship to the density of the predator population, 
and the reproduction plane will look like the one in Figure 4.17A. Even though 
these predators may be very efficient, their interaction with the prey may be quite 
stable if their saturation density is not too much greater than the prey’s extinction 
point (Figure 4.17B; cf. Figure 4.16A in which an efficient predator is not inhibited 
by its own density). We can also see that efficient predators with self-inhibiting 
interactions can regulate their prey at quite low densities, a result of considerable 
importance in the biological control of pests.

In contrast, some predators have very inefficient mechanisms for searching out 
their prey. This is particularly true for pathogenic microorganisms (at least those that 
are not transported by insect vectors), which reach their hosts by passive transmission 
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through the atmosphere or by contact between infected and uninfected individuals. 
Although these “predators” are able to survive at low host densities, by entering a 
dormant state, utilizing other hosts, and so on, their populations will not increase 
on a particular host until its density gets quite high. However, once this critical 
density is reached, they can reproduce huge numbers of offspring very quickly so 
that the slope of their equilibrium lines becomes very steep (Figure 4.17C). 
Interactions with “predators” of this kind may result in high amplitude cycles, or 
epidemics, of the pathogen population (Figure 4.17D).

Fig. 4.17 (A) Reproduction plane for an efficient predator which is limited at K
b
 by intraspecific 

interactions, and (B) its interaction with a linear prey equilibrium line. (C) Reproduction plane for 
a predator that responds with great efficiency only after its prey reaches a fairly high density, and 
(D) its interaction with a linear prey equilibrium line. (E) Reproduction plane for a predator that 
is limited at K

b
 by intraspecific interactions and does not respond to prey density, and (F) its 

interaction with a linear prey equilibrium line



Other predators are relatively independent of the density of a particular prey 
because they feed on a large number of different species. These general predators 
are usually limited in numbers by competition with their own kind for hunting ter-
ritories (e.g., most carnivorous birds and mammals). If they are completely inde-
pendent of the density of a particular prey, then their equilibrium lines will have 
zero slope and so will run parallel to the prey axis. In this case the predatory-prey 
interaction will have a very stable non-cycling equilibrium, provided that the preda-
tor’s saturation density is below the prey’s extinction point (Figure 4.17E,F). Even 
if the general predator responds numerically to the density of a particular prey spe-
cies, the equilibrium line will intercept the predator axis at a positive density, or 
negative P

a
, because the predator will be able to exist in the absence of this prey by 

feeding on other species. However, if the predators are too efficient or the prey too 
vulnerable, the interaction may be unstable as demonstrated by Figure 4.16A,B.

Of course, we can also visualize various types of prey reproduction planes. For 
instance, some prey become very vulnerable to being attacked at high population 
densities because their defense or escape mechanisms are weakened by severe 
competition amongst themselves. This is particularly true of the vulnerability of 
organisms to infectious pathogens. In these cases the prey’s equilibrium will steeply 
decline with increasing predator density at high prey densities, but it will decrease 
only slowly with increasing predator density at low prey densities, and we will 
obtain a reproduction plane like that in Figure 4.18A. The interaction with an effi-
cient predator will still tend to be cyclic but it will be more stable than the linear 
case (Figure 4.18B; cf. Figure 4.16A). Because infectious pathogens often have 
reproduction planes such as that illustrated by Figure 4.17C, an interesting exercise 
is to superimpose this plane on that shown in Figure 4.18A (see Exercise 5). This 
interaction will usually be characterized by population cycles, or epidemics of the 
pathogen, a result that is in line with our observations of real-life host-pathogen 
interactions.

A similar kind of prey reproduction plane will result if the environment contains 
a limited number of good hiding places, or refuges from predation. In this case the 
vulnerability of the average individual will be small when the population is not very 
dense, because most individuals will be able to find a hiding place. However, when 
population density increases and all the refuges become occupied, those unfortu-
nates without hiding places will be very vulnerable to predation. In Figure 4.18C a 
reproduction plane is drawn for a prey that is completely inviolate until all the ref-
uges are filled up, after which it becomes highly vulnerable to its predators. To make 
things more interesting we have also assumed that the prey is limited by other envi-
ronmental resources when predator density is very low. The interaction of this prey 
population with an efficient predator is stabilized by the refuge and the self-limitation 
of the prey, but we may observe continuous population cycles (Figure 4.18D).

Up to this point we have worked under the assumption that the predator actually 
kills its prey or, at least, severely impairs its reproduction and survival. However, many 
predators do not need to kill their prey in order to feed on them (e.g., sap-sucking and 
blood-sucking animals, fruit-eaters, browsers, and many parasitic animals and plants). 
In these cases the prey can withstand extremely high densities of the “predator” with 
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only minimal impact on its survival and reproduction, and the prey equilibrium line 
will have a very shallow slope. In effect, the vulnerability of the prey has been reduced 
by the specialized feeding behavior of the “predator,” and this will result in very stable 
interactions with both predator and prey at high densities close to their saturation levels 
(the student is encouraged to demonstrate this graphically).

When the feeding of a predator has little or no effect on the reproduction and 
survival of its prey, then very high populations of both species can coexist. However, 
an interesting phenomenon arises from this kind of interaction: Because the prey is 
not destroyed, room is available for another predator to enter the system. Thus, it is 
no surprise to find that aphids, mosquitoes, and the like often carry pathogenic 
microorganisms, which use the primary predator as a vector to reach the same host. 
Obviously this would not be a very successful strategy if the primary predator 
destroyed its prey.

Two important generalizations have emerged from our examination of various 
predator-prey reproduction planes. First, stable interactions are likely to occur, even 
if the predators are very efficient, when the predators are limited to densities below 
the level where they force the prey population to extinction. Second, stability can 
also be increased if the prey population is less vulnerable, or better still, immune to 
attack when its density is low. Both these conclusions apply equally to specific or 
general predators and, although they may seem intuitively obvious, they are very 
important to the population manager.

Fig. 4.18 (A) Reproduction plane for a prey that is more vulnerable to its predator at high 
population densities, and (B) its interaction with an efficient predator. (C) Reproduction plane for 
a prey that has a fixed number of safe refuges from predation and is also self-limited near K

a
, and 

(D) its interaction with an efficient predator



4.4.2. Predator Functional Responses

Until now we have been concerned with changes in the numbers of predators as 
their populations respond to the density of their prey. This is usually referred to as 
the numerical response of the predator. We have seen that the numerical interaction 
between predators and their prey is frequently cyclical in nature because of delays 
in the reproductive response of the predator (Figures 4.14 and 4.15). What happens, 
in effect, is that each predator is able to capture more food as the prey becomes 
more abundant, and this food is converted, after a delay, into more predators. 
However, we can see from this chain of events that two processes are involved in 
the overall predator response. First, each predator reacts to the density of the prey 
by eating more or less of them, and second, the prey that are eaten are eventually 
transformed into predator offspring. The primary feeding response of the individual 
predator is usually termed its functional response in order to differentiate it from 
the reproductive numerical response (see Note 4.11).

In contrast to the numerical response, the functional response of the predator is 
immediate because, given more food, the predator immediately eats more. This 
distinction is important because, as we have learned, fast-acting negative feedback 
loops tend to create more stable equilibria (Chapters 2 and 3).

Throughout this book we have actually recognized the functional response of 
predators as an intrinsic part of the prey’s density-dependent regulating mechanism. 
For instance, in Chapter 3 we argued that competition for food might weaken cer-
tain individuals so that they become more vulnerable to predation. In addition, as 
prey density increases, hiding places or escape routes will become overcrowded so 
that some individuals will be exposed to their predators and become easier to catch. 
In effect, therefore, competition between the prey for food and space affects their 
vulnerability to attack and, indirectly, the rate of feeding by predators as expressed 
by their functional responses. From this line of reasoning we can argue that the 
functional response of predators should be considered an intimate component of the 
prey’s reproduction plane. This line of reasoning is also consistent with our concep-
tual model of the single-species population (Figure 3.9) because, if you remember, 
we considered the density-dependent regulating function to be composed of all 
those factors that act rapidly in response to population density, while delayed feed-
back operated when the population affected the properties of its gene pool or its 
environment. As predator functional responses are immediate and do not involve a 
change in the properties of the environment, because the number of predators 
present does not change, then it seems reasonable to include them in the population 
regulating component of the system.

If we accept the argument that predator functional responses can be included in 
the prey’s reproduction plane, then we need to determine if different kinds of 
responses affect the form of this plane differently. There are three basic types of 
functional responses (Figure 4.19A), but all of them have the same fundamental 
property, in that the number of prey eaten per predator per unit time increases with 
prey density until the predators become satiated. At this point the response levels 
off, so that the number of prey consumed per predator remains the same irrespective 
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of prey density. However, the responses have some subtle, and very important 
differences.

Let us take a closer look at these three basic functional responses. In the first, 
the number of prey attacked increases linearly with prey density and then suddenly 
stops when the predators are satiated. This type of response seems to be rather rare 
in nature, but may be characteristic of some filter feeders, which spend little or no 
time pausing after each prey is captured; that is, they do not need to stop hunting in 
order to kill and devour their prey. On the other hand, the type II response is typical 
of predators that pause after each prey is captured and, therefore, their rate of attack 
declines as the density of their prey increases. This type of response seems to be 
typical of many invertebrate predators, but it should be noted, however, that most 
of the data come from laboratory experiments. Type III functional responses are 
characteristic of predators that attack their prey at an increasing rate as prey density 
rises, but then the rate of attack declines as handling time becomes a factor in deter-
mining how fast prey can be caught. It is generally thought that type III responses 
are typical of general predators, particularly vertebrates, which switch their attack 
to a particular prey species when it becomes more abundant; that is, they learn to 
look for, or develop a “searching image” of, the more abundant species in their 
repertoire of prey. However, these responses have also been found in some insect 

Fig. 4.19 (A) The three basic forms of the predator functional response, and (B) the corresponding 
percentage survival of a prey population subjected to predation by the three types of functional 
responses (see Note 4.12 for the method of transformation)



parasitoids, and they may be more common in nature than was previously supposed 
(see Note 4.13).

The impact of the three types of functional responses on the prey population can 
be seen by calculating the percentage survival of the prey when subjected to the 
three kinds of predation (Figure 4.19B and see the corresponding file in EXCEL in 
the disk that comes with this book and Note 4.12 for computational procedures). 
We can see from these graphs that type I and II responses allow an increasing 
proportion of their prey to survive as the density of the prey rises. This creates a 
positive feedback effect and, consequently, these responses cannot act as density-
dependent regulating factors. On the other hand, the S-shaped type III response 
causes prey survival to decrease at first but then, as handling time and satiation 
become important factors, survival increases with prey density in a similar manner 
to the type II response. The negative feedback that occurs at the lower prey densi-
ties suggests that predators with type III responses can act as regulating agents in 
the lower ranges of prey density. However, once the prey population attains higher 
densities this negative feedback regulating effect is disengaged. As we will see 
later, this is an extremely significant result.

Let us now try to see how the type III functional response may affect the repro-
duction plane of a prey population. Suppose a certain percentage survival from 
predation is necessary for the individual rate of increase to be zero. In other words, 
mortality from predation and all other factors in the environment exactly balances 
the number of prey born in a given period of time. The R = 0 line will cross the sur-
vival curve at two points, if at all (Figure 4.20A). If we draw survival curves for 
several different predator densities, we will obtain a set of equilibrium points, 
which can then be used to construct the reproduction plane (Figure 4.20B). If the 
prey population is regulated by competition for resources at high densities, then the 
equilibrium line will reach its maximum at the carrying capacity, K

a
, as shown in 

this figure (a similar reproduction plane is derived mathematically in Note 4.14). 
This reproduction plane may look familiar to those who remember the W-shaped 
curves of Chapter 3 (e.g., Figure 3.16). It is, in actuality, identical except that the 
low-density cooperative interaction is missing. As we know, the midsection of the 
equilibrium line (the broken line in Figure 4.20B) represents a set of unstable equi-
libria, which we originally interpreted as being due to cooperative interactions. In 
a sense, a form of unconscious or de facto cooperation is occurring in the predator-
prey interaction because, as prey density rises above a certain level, the addition of 
an individual increases the survival of its cohorts (Figure 4.20A).

We can now superimpose predator and prey reproduction planes as we did previ-
ously. Because many predators with type III responses are vertebrate generalists, 
who are limited by things other than the abundance of a particular prey, then their 
equilibrium states will appear as a horizontal line across the superimposed plane 
(Figure 4.21A,B). Interactions with these predators may create one or two stable 
equilibria, depending on the density of the predator population. This result is 
extremely important to those involved in the management of predator-prey popula-
tions. For instance, if the prey is a useful resource, then we can see that the quantity 
of the resource can be significantly increased by decreasing the predator’s density 
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from K
b
′ to K

b
 (Figure 4.21B). Conversely, if the prey is a pest, then it can be regu-

lated permanently at a very low density by increasing the carrying capacity for the 
predator population (e.g., providing nesting boxes for hole-nesting birds).

Important management implications also arise where predator-prey interactions 
create two potentially stable equilibria (Figure 4.21A). Here the system will move 
toward one or the other of its equilibrium states depending upon which side of the 
unstable threshold (the broken line) it starts. However, even if the system is at a 
particular equilibrium point, it can be moved into the domain of the other by outside 
disturbances. For example, suppose the prey is a useful resource, which is being 
harvested for food and that, prior to harvesting, the population was at the higher 
equilibrium near to its carrying capacity, K

a
 (Figure 4.21A). Provided that the har-

vest does not reduce the population below the unstable threshold, then the popula-
tion will always tend to return to its upper equilibrium. However, if the population 

Fig. 4.20 (A) Percentage survival of a prey population when subjected to three different densities 
of predators, B’s, when the predator has a sigmoid type III functional response; the survival 
requirement to maintain an equilibrium prey population is shown as a broken line R = 0. (B) The 
N-shaped prey equilibrium line produced when the points a, b, c, d are transposed directly from 
the graph above (see also Note 4.14)



is overharvested, or if the harvest plus a natural catastrophe reduces it below the 
unstable threshold, then the population will move to its lower equilibrium and 
remain there even if harvesting is discontinued (see, for example, the salmon prob-
lem illustrated in Figure 3.6). The only way that the stock can be re-established at 
its previous level of abundance is through hatchery operations, which raise the 
density above the critical threshold, or by a temporary predator control program 
(note that the predators need only be controlled for a short period of time to allow 
the prey population to rise above the critical threshold).

On the other hand, if the prey is a pest that is regulated at the lower equilibrium by 
its predators, then it may be displaced into the domain of the upper equilibrium 
by an outside disturbance. Such a disturbance may take the form of a flight of insect 
pests from your neighbor’s fields, which raises the density of the resident popula-
tion above the unstable threshold, or it may be the application of a pesticide for 
another pest species, which kills off the predators. Whatever the reason, the pest 
population will then grow toward its upper equilibrium where it will cause consid-
erably more damage to the crop.

If type III functional responses are found in specific predators, or in general 
predators which respond numerically to the density of their prey, then we can obtain 
a variety of dynamic behaviors depending on where the predator equilibrium line 

Fig. 4.21 Several predator reproduction planes superimposed on the N-shaped prey equilibrium 
line; (A, B) general predators with no numerical response to prey density, (C, D) general predators 
with different kinds of numerical responses to prey density − K

a
 and K

b
 are the carrying capacities 

of prey and predator, respectively
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crosses that of its prey. For example, we may observe cyclic outbreaks of the prey 
population whenever it transcends the unstable equilibrium (Figure 4.21C,D). 
Population systems that have a single stable equilibrium but that can exhibit radical 
disruption following a minor disturbance are called metastable. The latter case may 
be more usual with general predators. Here the predators remain more or less unaf-
fected numerically when the prey is relatively sparse but, when the prey becomes 
very abundant relative to the food supply in other areas, predators may migrate in 
large numbers to this abundant food source (this will be discussed in more detail in 
the next chapter). These results are significant because they help to explain why 
some populations remain at rather low densities for long periods of time but then 
go through eruptive population cycles, outbreaks, or epidemics.

4.4.3. Predation in Variable Environments

We have analyzed the interactions between predator and prey populations under the 
assumption that all the other properties of the shared environment remain constant 
with time. It is now time to look at the effects of variable environments on this 
interaction. Properties of the shared environment affect the reproduction planes of 
both predator and prey, but not necessarily in the same way nor to the same degree. 
Certain environmental conditions may favor the predator and others the prey. The 
important question is how will environmental changes affect the steady-state densi-
ties of predator and prey populations and, more importantly, the stability properties 
of the interaction?

First considering the prey reproduction plane, we would expect the shared envi-
ronment to influence the saturation density, K

a
, and the extinction point, P

b
. 

Environments that provide more essential resources for the prey will permit higher 
saturation densities to be attained. We can show, and the student is encouraged to 
do so, that raising K

a
 will have rather minor effects on the equilibrium densities but 

will tend to destabilize the predator-prey interaction (see also Note 4.15 for an 
example of this effect).

As we know, the prey extinction point, P
b
, is affected by the vulnerability of the 

prey and its maximum per capita rate of increase. Thus, shared environments that are 
more favorable for the reproduction and survival of the prey, or that provide more 
hiding places and escape routes, will increase the stability of the predator-prey inter-
action. As organisms are usually well adapted to their environments, we might 
expect that both K

a
 and P

b
 will be higher in more favorable environments, and that 

their counteracting effects on stability will tend to maintain the status quo. However, 
we may find environments where the prey is very vulnerable to being attacked and 
yet which permit high saturation densities. Such conditions are often created in labo-
ratory experiments where the prey is provided with plenty of food but few hiding 
places or escape routes. It should not surprise us, therefore, that most of these experi-
mental predator-prey systems prove to be unstable (Figure 4.22 and Note 4.16).

In a similar manner, variations in the shared environment may modify the param-
eter P

a
 of specific predators and, if their populations are limited by resources other 



than the prey, their saturation densities, K
b
, as well. Naturally, the efficiency of a 

predator as it searches for prey is affected by physical impediments to its rate of 
movement or to its tracking ability – barriers, rain, snow, wind, temperature, etc. – 
whereas the saturation density is determined by such things as nesting places. From 
our previous analyses we can conclude that any environmental change that favors a 
specific predator, or for that matter a general predator that responds numerically to 
the density of its prey, will tend to destabilize the predator-prey interaction. Once 
again we will find such conditions in many laboratory ecosystems, which turn out to 
be unstable (see Note 4.16). However, when these artificial ecosystems are changed 
to make things more difficult for the predator, or to provide hiding places or escape 
routes for the prey, then they become more stable (Figure 4.22).

Fig. 4.22 Reconstruction of C. B. Huffaker’s experiments with a predatory mite (see Note 4.16 
for reference): (A) Trajectory leading to the extinction of both prey and predator in a simple 
environment, and (B) cyclic trajectory when prey and predator coexist in a more complicated 
environment containing barriers to the predator and escape routes for the prey. The broken lines 
are rough guesses at the prey and predator equilibrium lines
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Finally, we have seen in Figure 4.21A,B that changes in the saturation densities 
of general predators with S-shaped functional responses may radically alter the 
equilibrium conditions of the predator-prey interaction. In environments that are 
unfavorable for the predator we may find a stable equilibrium at high prey and low 
predator density. As the environment for the predator improves, two stable posi-
tions may be created; then, in very favorable environments, we may again find a 
single stable equilibrium, but this time at low prey and high predator density. As we 
mentioned before, this leads to some important inferences concerning the manage-
ment of predator-prey systems and their environments.

4.4.4. Predator and Prey Strategies

From an evolutionary perspective, both predator and prey species strive to maxi-
mize their own reproductive potentials or, more strictly, their genetic fitness. 
However, whilst the prey can exist perfectly well without its predator, the predator 
requires the presence of its prey. Therefore, it is in the predator’s interest to practice 
conservation. The optimal strategy of the predator then involves the counteracting 
pressures to maximize its own reproduction and survival, usually through the use 
of efficient hunting tactics, and yet to conserve enough prey to replenish the food 
supply for its offspring.

This has been very nicely exemplified in the case of long-lived insect predators 
feeding on short-lived prey. As most of these suffer an enormous egg and larval 
mortality due to cannibalism and intraguild predation, selection acts mainly on 
optimizing their oviposition strategies in terms of maximizing the likelihood that 
the offspring will survive until reproductive age. The oviposition strategy of a 
predator with a long larval developmental time will depend on a longer projection 
of the future prey abundance in the patch, will therefore include more bottlenecks 
or higher probability of a bottleneck than that of a predator with a short develop-
mental time, and consequently must be more conservative in terms of preserving 
their prey (the GTR hypothesis). A detailed explanation of this theory is given in 
Note 4.17, using aphid predators as an example.

We have seen that predators can increase their own equilibrium densities by 
improving their hunting efficiency, but that this will destabilize the predator-prey 
interaction (Figure 4.16A). However, the interaction can be stabilized if the preda-
tors have effective mechanisms for limiting their own numbers (Figure 4.17B). It 
should not surprise us, therefore, that many efficient predators such as the large 
vertebrates have evolved territorial behaviors as a means to limit their population 
sizes. Man, probably the most efficient predator of all, is one of the few who has 
attempted to solve this problem by increasing the carrying capacity and individual 
rate of increase of his prey by using agricultural technology. However, our analysis 
indicates that, although this may permit higher equilibrium densities to be attained, 
the stability of the interaction may remain unaffected or may even be lowered. It is 
unlikely that many animals, with the doubtful exception of man, have the intellect 



to rationalize the critical importance of a stable predator-prey interaction. Thus, 
most predators have had to learn this lesson in the unforgiving arena of evolution. 
In the past, efficient predators that lacked the genetic “sense” to limit their own 
numbers must have gone extinct in droves.

Stable predator-prey interactions can also be created if efficient predators limit 
the impact that they have on their prey. Hence, those predators that do not seriously 
debilitate their prey can attain very high equilibrium population densities. From this 
point of view parasitism emerges as a highly effective strategy, at least in those 
parasites that do not seriously harm their hosts.

In an immediate sense, evolutionary pressures will always tend to select the 
more efficient predators from the population, because they will succeed in captur-
ing more prey and in producing more offspring. However, the long-term fitness of 
the species may be lowered by this trend unless selection also favors conservative 
tendencies; for example, territorial or other self-limiting behaviors or reduced 
impact on the prey. It is much more difficult to see how natural selection favors 
these traits without evoking the concepts of group selection (see Note 4.18). In this 
sense selection operates on the group, or population, rather than on the individual. 
Those populations that are poorly adapted to their environment or that create unsta-
ble conditions are much more likely to become extinct. Thus, predator populations 
that evolve highly efficient hunting behaviors, but that fail to evolve methods for 
limiting their own numbers or their impact on their prey, may flourish for a time but 
are much more likely to crash to extinction.

In contrast to the predator, the strategy of the prey is simply to maximize its own 
reproductive potential (here we are strictly avoiding the question of the prey con-
serving its own food resources and are restricting ourselves purely to its role as the 
prey), in other words, to avoid being eaten by its predators. There are a number of 
tactics that a prey can evolve to achieve these ends: locomotory and sensory sys-
tems may be adapted for sensing and fleeing predators, cryptic habits and camou-
flage permit some organisms to hide, while sessile organisms usually have 
well-developed defensive systems that may involve distasteful or toxic chemicals 
and/or physical structures such as shells or spines. Most organisms also possess 
internal defensive mechanisms for dealing with parasitic invasions – phytoalexins, 
antibodies, leukocytes, and the like.

Perhaps the most interesting defensive tactics have been evolved by organisms 
that are attacked by predators with learning abilities. Some of these have an 
unpleasant taste but, instead of being camouflaged, they go out of their way to be 
noticed with bright, distinctive colors and patterns. The intelligent predator, having 
tasted one of them, carefully avoids its brightly marked and unpleasant brethren. 
Even more intriguing is the mimic who, being quite tasty himself, dons the attire of 
his distasteful associates and thereby fools the predator. As you can imagine, there 
are many mimics of wasps, bees, ants, and other potent species. The mimic, how-
ever, has a problem, which is not unlike that of the predator: if he becomes too 
numerous, so that the predator encounters his kind too frequently, then the learning 
may be reversed. The mimic must practice population control if its strategy is to 
work. (An interesting exercise is to evaluate the interaction between mimic and 

4.4. Predator-Prey Interactions 127



128 4 Interactions Between Two Species

model. The reproduction planes and equilibrium solutions will be similar for preda-
tor and prey.)

In the continuous struggle between predator and prey, the latter usually has the 
evolutionary advantage. The pressures of predation will select those prey individu-
als that are better able to escape or defend themselves. This may put pressure on the 
predators to evolve more efficient hunting behavior. However, unless the prey’s 
tactics are very powerful, this needs not happen. Although the prey may be more 
difficult to catch at first, soon there will be more of them making them easier to 
capture again. Thus, fairly modest changes in the prey’s defense or escape tactics 
may place little or no selective pressure on the predator. In contrast, if the predator 
evolves more efficient hunting techniques, then the prey population will be 
depressed, making them more difficult to find and the system will become more and 
more unstable. In fact, it may sometimes be advantageous for the predator to evolve 
less efficient hunting behaviors. This will result in increased prey density, greater 
stability, and may even result in a higher predator equilibrium density. For example, 
the females of some insect “predators” of forest trees have lost their ability to fly, 
thereby lowering their searching efficiency (e.g., the Douglas-fir tussock moth 
and the gypsy moth). Thus, the co-evolution of predators and their prey is controlled 
by a complex pattern of interdependencies, which – in the long run – tend to produce 
a finely tuned and balanced interaction. We will have much more to say on this 
subject when we consider spatial interactions in the next chapter, and in the last 
chapter we will see that predator-prey interactions may even be viewed as being 
mutually beneficial to both predator and prey species.

4.5. Chapter Summary

In this chapter we have examined interactions between two species cohabiting the 
same geographic region by considering them as separate subsystems interacting 
through their shared environment. These interactions were evaluated by superim-
posing the reproduction plane of one species on that of the other. The evaluation 
criteria were the densities of each species at equilibrium and the relative stability of 
the interaction. The main points are briefly summarized below:

1.  Interactions were classified according to the effect of each species on the 
favorability of the other’s environment as cooperative (++ or +0), competitive 
(− − or −0), and predator-prey (+ −).

2.  Cooperative interactions form an unstable positive feedback loop, which results 
in indefinite growth of both species unless one or the other is limited by other 
environmental factors.

3.  Competitive interactions also form an unstable positive feedback loop, which can 
only be stabilized if one or both species are limited by other environmental factors.

4. Permanent coexistence of competing populations is only possible if the negative 
effect of each species on the members of its own population is greater than its



  effect on its competitor’s; that is, K
a
 < C

a
 and K

b
 < C

b
. In all other cases one 

species will win the contest and the other will eventually be excluded.
 5.  The equilibrium densities of the competing populations are determined by the 

intensity of the interaction, higher densities being attained when the competi-
tors have different preferences or utilize alternative resources.

 6.  Under certain conditions (i.e., when K
a
 > C

a
 and K

b
 < C

b
) the interaction 

between two competitors may create a double equilibrium system in which 
species A exists alone or both species coexist, with species B at a much higher 
density.

 7.  Environmental changes may be very important in determining whether com-
peting species coexist or one or the other dominates. In particular, when one 
species reduces the favorability of its own environment while having no effect 
or even improving that of its rival, then it may eventually be replaced, giving 
rise to ecological succession.

 8.  Strong competitors are often specialists that utilize force to wrest resources 
from their rivals or generalists with a wide range of alternative resources to 
choose from. These species usually have rather low maximum per capita rates 
of increase and do best in stable environments.

 9.  Weak competitors often exist in nature by being opportunists, seizing and uti-
lizing resources rapidly before the stronger rivals arrive on the spot. For this 
reason they are usually highly mobile organisms with high maximum rates of 
increase and are best adapted to more unstable or harsh environments. Pioneer 
species also use the advantage of numbers to temporarily hold resources from 
their stronger rivals.

10.  Predator-prey interactions form a negative feedback loop whose stability 
depends on the properties of both predator and prey. Unstable interactions 
occur when highly efficient predators attack very vulnerable prey. However, 
this interaction can be stabilized if the predators are limited by other environ-
mental or behavioral mechanisms, if their impact on the prey is minimized, or 
if the prey has refuges from predation.

11.  The predator-prey interaction is often of a cyclic nature. Continuous cycles 
may sometimes be observed if the system is on the borderline of instability, if 
time delays are present in the feedback loop, if predators are inefficient at low 
prey densities but efficient at high densities, or if prey attacked by efficient 
predators have refuges from predation.

12.  The steady-state densities of the two species are determined by the efficiency, 
impact, and self-regulatory characteristics of the predator and the vulnerability 
of the prey. Stable interactions will usually be found when the system equili-
brates at high prey and low predator densities, unless the predator limits its own 
numbers, or the prey have safe refuges from predation.

13.  General predators which switch their attack from one prey species to another 
often have S-shaped functional responses. Such functional responses create 
complex interactions, which may have one or two stable equilibria, or exhibit 
cyclic behavior, depending on the numerical response of the predator 
population.
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14.  Environmental changes that affect the vulnerability of the prey, the efficiency 
of the predator, or the saturation density of either species, may have severe 
effects on the stability of the predator-prey interaction.

15.  The optimal strategy for the predator involves the conflicting goals of maxi-
mizing its reproductive potential and yet conserving prey for future genera-
tions. The most effective strategy combines maximum efficiency with 
self-limiting behavior such as territoriality.

16.  The strategy of the prey is simply to maximize its own reproductive potential by 
escaping its predators using mobility, hiding places, camouflage, defensive weapons, 
or mimicry. Evolutionarily, the prey is usually one jump ahead of its predator.

Exercises

4.1. Analyze the model

A A R s A c B A

B B R s B c A
t t t t t

t t t t

= + − −
= + − −

− − − −

− − −

1 1 1 1

1 1 1

( )

( )
ma a b

mb b a BBt −1

which expresses the interaction between two competing populations when the 
repressive effect of each species on its own numbers and on those of its competitor 
are linearly related to its density (see Note 4.4).

A.  What do the parameters s and c represent?
B.  Draw the reproduction planes for two competing species when R

ma
 = R

mb
 = 2, 

s
a
 = s

b
 = 0.002, and (i) c

a
 = 0.001, c

b
 = 0.001; (ii) c

a
 = 0.001, c

b
 = 0.003; and 

(iii) c
a
 = 0.003, c

b
 = 0.003. Evaluate the stability properties of these interac-

tions by drawing trajectories on the superimposed reproduction plane. What 
conditions are necessary for these populations to coexist?

C.  Suppose we have the system in B(i) above and the environment becomes 
less favorable for species B so that R

mb
 = 1. Draw the superimposed repro-

duction plane for this interaction and evaluate its stability graphically.
D.  Using the disk that comes with this book, run the program for two-species 

competition in EXCEL. Repeat the exercise above using numerical simulations. 
What additional information did you obtain from the numerical solutions?

4.2.  Explain, using your knowledge of competition theory, how ecological succes-
sion may occur.

4.3.  Explain how opportunistic species are able to persist in the face of superior 
competitors.

4.4.  Analyze the model

A A R s A vB A

B B R B eA B
t t t t t

t t t t t

= + − −
= + −

− − − −

− − − −

1 1 1 1

1 1 11

( )

( / )
ma a

mb 11



which describes the interaction between a prey, A, and its predator, B, under 
the assumption of linearity (see Note 4.9 for details).

A.  What do the parameters v and e represent?
B.  Draw the reproduction planes for each species and superimpose them (equa-

tions for computing the equilibrium lines can be found in Note 4.9) under the 
conditions that R

ma
 = 2, R

mb
 = 1, s

a
 = 0.002, v = 0.01, e = 0.2. Identify the 

equilibrium point (A*, B*) you can also find this point mathematically by 
solving the equilibrium system (see Note 4.9). Perform a steady-state analysis 
to determine the stability of this system; in other words solve the model 
numerically when it is displaced from equilibrium (e.g., A

0
 = A* − 100, B

0
 

= B* − 40.). Use the disk that comes with this book and the program for 
predator-prey interactions in EXCEL. Plot the trajectory on the superimposed 
reproduction plane and in time series.

C.  Repeat the above analysis with all the parameters the same except let e = 0.5. 
Calculate the equilibrium point and stability properties.

D.  Repeat the analysis with e = 0.5 and v = 0.005 and evaluate the equilibrium 
point and stability properties.

4.5.  An insect is infected and killed by a polyhedrosis virus. However, the insect 
only becomes vulnerable, or the virus becomes virulent, at very high popula-
tion density when food shortage causes physiological stress amongst the 
crowded insects. In addition, the transmission of the virus from infected to 
healthy individuals is facilitated when the density of the insect becomes high. 
Draw a superimposed reproduction plane for this “predator-prey” system and 
evaluate and describe its dynamics.

4.6.  In Note 4.14 we showed how an N-shaped prey equilibrium line can be cal-
culated from an equation which includes a type III predator functional 
response. This is done by finding the predator densities required to maintain 
particular prey equilibria. Use this method to construct a prey reproduction 
plane when the prey’s maximum individual rate of increase R

m
 = 2, its carry-

ing capacity K = 200, its density which begins to saturate the predator A
i
 = 

20, the maximum predator attack rate ε = 2, and the predator switching coef-
ficient n = 2.

A.  Suppose we have an area where this general predator is limited to 20 indi-
viduals by a shortage of nesting places. What would be the equilibrium den-
sity of the prey?

B.  What would happen if we artificially increased the number of nesting sites so 
that 40 predators could now live in this area?

C.  Suppose an environmental catastrophe then killed off 80% of the prey popu-
lation but had no effect on the predators. What equilibrium density would the 
prey attain after this catastrophe?

D.  If the prey is a pest, how many predators would have to be supported in the 
area to ensure that the pest population always remained at a low 
density?
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Notes

4.1.  A number of classifications have been proposed for interactions between two 
species, resulting in a sometimes confusing proliferation of terms. Eugene 
Odum, in his classic text Fundamentals of Ecology (p. 211 in the 3rd ed.; 
W. B. Saunders Co., Philadelphia, 1971), identifies nine kinds of interactions 
by splitting competition into direct and indirect types, separating predation 
from parasitism, and dividing symbiosis into obligatory and nonobligatory 
forms. However, in keeping with the nature of this present book, we have 
tended to lump together rather than to split apart in an attempt to retain an 
elemental simplicity. We hope to see that particular types of interactions are 
the evolutionary result of species interacting in the three basic ways.

4.2.  Linear Cooperation Model. Consider the linear density-dependent model of 
Chapter 2, equation (2.6), which describes the dynamics of a single species,

A A R s A At t t t= + −− − −1 1 1( )ma a ,

where A
t
 is the density of species A at time t, R

ma
 is its maximum per capita 

rate of increase, and s
a
 is the repressive effect of each individual on the rate of 

increase of its cohorts. If a cooperator is present in the environment, then each 
individual of this species, B, will have a positive effect, p

b
, on the rate of 

increase of A. Thus, we can rewrite the equation as

A A R s A p B At t t t t= + − +− − − −1 1 1 1( )ma a b

and likewise

B B R s B p A Bt t t t t= + − +− − − −1 1 1 1( )mb b a

Now species A will be at equilibrium A* when

R s A p Bma a b= + =* 0

and the equilibrium line for species A is defined by

A
R

s

p B

s
* = +ma

a

b

a

or, substituting K
a
, the saturation density of A, for R

ma
/s

a
 (Chapter 2), we get

A K p B s* /= +a b a

and likewise for species B



B K p A s* /= +b a b .

We can see that the slope of the line p/s, or the marginal benefit of cooperation 
Q in the text, is defined as the total beneficial effect of each cooperator divided 
by the repressive effect of individuals of the same species.
Now the interacting system will be in equilibrium when

A K p B s* * /= +a b a

and

B K p A s* * /= +b a b .

Substituting for B* in the first equation we get

A K
p

s
K p A s* *( / )= + +a

b

b
b a b ,

from which

A Z p p s s* /( / )= −1 b a a b , 

where Z K p K s= +a b b a/ ,

Fig. 4.23 Transformations of reproduction planes
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From this we can see that A* takes a positive value if, and only if

p p

s s
b a

a b

< 1 ,

which is our criterion for stable coexistence Q
a
Q

b
 < 1 in the text. We can also 

write this criterion as

p p s sb a a b< ,

which states that the combined beneficial effects of cooperation must be less 
than the combined self-limiting effects if the populations are to coexist as a 
stable system. This result is, perhaps, intuitively obvious because when we add 
a cooperator, and thereby increase the survival of the other species, new mem-
bers will be added to that population which will compete with their fellows for 
food and space. If the effect of this increased competition is stronger than the 
benefits received from cooperation, then a stable interaction is possible.

4.3.  It is very important to understand the concept of superimposed reproduction 
planes, and so the student is encouraged to perform the following exercise 
with cooperative, competitive, and predator-prey interactions: First draw the 
equilibrium lines for each species on separate sheets of paper, or better still, 
clear acetate. Then manipulate one or both sheets until species A occupies the 
abscissa and species B the ordinate and the origin A = B = 0 is in the lower left 
hand corner. These manipulations are illustrated for the cooperative interac-
tion in Figure 4.23. The reproduction planes can now be superimposed by 
drawing B’s on top of A’s, and labeling each equilibrium line, their intercepts, 
and their zones of population growth and decline.
 It is also important for the student to compute several population trajecto-
ries on each superimposed plane. To do this start at any point (A,B) in the 
graph and put arrows for the expected direction each species will move; e.g., 
if A’s sign is positive at this point it will move horizontally to the right and if 
B’s is negative it will move vertically downwards. The distance moved by 
each species will depend on their positions relative to their respective zero 
axes and to their equilibrium lines; i.e., population change over the time incre-
ment will be smallest close to these lines and greatest in between (see Chapter 
3). The distance and direction moved on the reproduction plane will be the 
resultant of these two vectors (see Figure 4.2C). For purposes of simplicity it 
is best to assume that the approach to equilibrium is asymptotic. However, we 
should remain aware that the stability qualities of each system are governed 
by the slope of the reproduction curve in the immediate vicinity of the equi-
librium line as well as time delays in the negative feedback loops. These quali-
ties have been suppressed in our simplified two-dimensional graphical model. 
However, the rules of feedback specify that if either species is unstable by 
itself, or exhibits cyclic dynamics, then this effect will be transferred to the 
two species interaction (see Chapter 6).



4.4. Linear Competition Models. If we return to the density-dependent model of 
Chapter 2 we have equation (2.6), which describes the dynamics of a single 
population system. This can be written

A A R s A At t t t= + −− − −1 1 1( )ma a ,

where A
t
 is the density of species A at time t, R

ma
 is its maximum per capita 

rate of increase, and s
a
 is the repressive effect of each individual on the rate of 

increase of its cohorts. Now if a competing species, B, is present, then each 
individual of its population will have a repressive effect, c

b
, on the per capita 

rate of increase of the members of population A. Thus, the total repressive 
effect on A will be s

a
A + c

b
B, and the equations for the interacting population 

system are

A A R s A c B A

B B R s B c A
t t t t t

t t t t

= + − −
= + − −

− − − −

− − −

1 1 1 1

1 1 1

( )

( )
ma a b

mb b a BBt −1

Now species A will be in equilibrium, A*, in the presence of B, whenever

R s A c Bma a b− − =* 0

and, therefore, the equilibrium line for A is defined by

A
R

s

c B

s
* = −ma

a

b

a

and we see that the marginal cost of competition, or the slope of the line, is 
W

b
 = c

b
/s

a
. We can also substitute K

a
 for R

ma
/s

a

A K c B s* /= −a b a .

It is evident that when B is zero then A*=K
a
, and when A* is zero then B = K

a
s

a
/c

b
. 

The density of species B which reduced A’s equilibrium to zero was called C
b
 in 

the text and, therefore, C
b
 = K

a
s

a
/c

b
. With values for K, s, and c for each species 

we can draw their equilibrium lines and evaluate the dynamics on the superim-
posed reproduction plane, as we did in the text, to show that the conditions for 
stable coexistence are only met when K

a
 < C

a
 and K

b
 < C

b
. However, we can also 

demonstrate this mathematically by solving the equilibrium system

A K c B s

B K c A s

* *

* *

/

/

= −

= −
a b a

b a b

Substituting for B in the first equation we get

A K
c

s
K c A s* *( / )= − −a

b

a
b a b ,
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which reduces to

A
K

c c s s

c K

s c c s s
*

( / ) ( / )
=

−
−

−
a

b a a b

b b

a b a a b1 1
.

From this equation we can see that a positive equilibrium is possible under two 
conditions:
(1) When (1 − c

b
c

a
/s

b
s

a
) < 0, then A* will be positive provided that

K

c c s s

c K

s c c s s
a

b a b a

b b

a b a b a( / ) ( / )1 1−
<

−
,

which reduces to

K c K sa b b a< / .

This can be rearranged to give

K s K c Cb a a b b> =/ .

However, a graphical analysis of this equilibrium point will show it to be 
unstable (Figure 4.6A).
(2) When (1 − c

b
c

a
/s

b
s

a
) > 0, then A* will be positive provided that

K

c c s s

c K

s c c s s
a

b a b a

b b

a b a b a( / ) ( / )1 1−
>

−
,

which reduces to

K c K sa b b a> / .

This can be rearranged to give the result obtained in the text

K s K c Cb a a b b< =/

and we can show graphically that the equilibrium under these conditions is 
stable (Figure 4.6B).
If we perform these calculations for B*, we get exactly the same results as in 
(1) and (2), only the indices a and b are swapped, as the equations for the 
competitive systems are symmetrical with respect to a and b. The criteria for 
a stable coexistence between the two competing species are, therefore,

K
K S

c
C K

K S

c
Ca

b b

a
a b

a a

b
band< = < =



or, substituting R
m
/s for K,

R

s

R

c

R

s

R

c
ma

a

mb

a

mb

b

ma

b

and< < ,

which can be rearranged to give

s

c

R

R

c

s
a

a

ma

mb

b

b

> > .

We can see that when the rate of increase of one species is large relative to the 
other, then it must have a correspondingly strong self-inhibiting effect or a 
weak interaction with its competitor if the two species are to coexist. When the 
two species have similar rates of increase, then coexistence is possible if s

a
 > c

a
 

and s
b
 > c

b
; that is, if the self-inhibiting effects of both species are stronger than 

their competitive effects on the other species.
 The competition equations are more commonly found written in continuous 
time as the so-called “Lotka-Volterra” (see A. J. Lotka’s Elements of Physical 
Biology, Williams and Wilkins, Baltimore, 1925) equations. If we let p = c

b
/s

a
 

and q = c
a
/s

b
, then

dA dt r A pB K A

dB dt r B qA K B

/ ( ( ) / )

/ ( ( ) / )

= − +
= − +

ma a

mb b

1

1

For those interested in the detailed experimental analysis of competing sys-
tems we suggest reading G. F. Gause’s delightful book The Struggle for 
Existence, published by the Williams and Wilkins Company, Baltimore, in 
1934.

4.5.  M. E. Gilpin and F. J. Ayala [Proceedings of the National Academy of Science 
(U.S.A.), vol. 70, p. 3590, 1973] have analyzed the interaction between two 
species of Drosophila competing for a fixed quantity of food in culture bottles 
and found equilibrium systems of the type shown in Figure 4.9C,D. Their 
model explains the nonlinearities in the intraspecific competitive process. 
However, an equally tenable argument is that the interspecific interaction is 
nonlinear or, for that matter, that both processes have nonlinear components.

4.6.  An interesting review of the rise and fall of various herring, sardine, anchovy, 
and pilchard fisheries is given by G. I. Murphy in the book Fish Population 
Dynamics (edited by J. A. Gulland, John Wiley and Sons, New York, 1977). 
Some of these fisheries have collapsed dramatically under heavy exploitation 
and – in some instances – the collapse seems permanent. However, there is 
considerable evidence that other similar species have increased dramatically 
following the collapse of the original fishery (see Figure 4.11).
 As an expatriate Cornishman, AAB is keenly aware of the collapse and virtual 
extinction of the Cornish pilchard schools, and of the current heavy exploitation 
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of mackerel stocks – perhaps these were the competitors that replaced the 
pilchards? The lessons from competition theory and past experience seem 
plain and, yet, little seems to be done to rectify these problems.

4.7.  Strong competitors are often referred to, following the ideas of Robert 
MacArthur and others, as K-strategists. The K-strategy aims at maintaining a 
high but consistent population close to the saturation density (carrying capac-
ity) and is usually most successful when organisms inhabit rather stable envi-
ronments. K-strategists usually have low maximum rates of increase and 
fast-acting regulating mechanisms and, therefore, show high degrees of tem-
poral stability.
 Opportunists, on the other hand, are called r-strategists, because they have 
high maximum rates of increase, inhabit variable or temporary environments, 
and tend to have low temporal stability. Although, for a number of reasons, we 
have avoided these terms in this book, the following references are provided for 
those who wish to pursue this subject: The Theory of Island Biogeography, by 
R. H. MacArthur and E. O. Wilson (Princeton University Press, 1967) and T. R. 
E. Southwood’s contribution in Theoretical Ecology – Principles and Applications, 
edited by R. M. May (W. B. Saunders and Co., Philadelphia, 1976).

4.8.  The predator parameters can also be viewed at a more basic physiological 
level using the approach of Andrew Gutierrez and his co-workers (e.g., see the 
article by A. P. Gutierrez in the EPPO Bulletin, vol. 9, p. 265, 1979). From this 
perspective we consider predator reproduction and survival to be a function of 
stored energy, which is supplied by eating prey, and physiological time, or 
aging. If we set the time scale equal to the life span of the predator, then the 
energy available for reproduction is S − D

m
, where S is the energy supply, in 

terms of prey eaten, and D
m
 is the energy demand for basic metabolic proc-

esses in order to keep the predator alive (D
m
 can be viewed as the number of 

prey required to meet the basic metabolic demands of the predator). We can 
see that the predator will starve if S < D

m
, while if S > D

m
 there is surplus 

energy which can be used for reproduction. Given an energy supply in excess 
of the basic survival demands, then the number of offspring produced 
will increase, when S (and consequently the supply/demand ratio, S/D

m
) will 

increase, and it will approach its intrinsic maximum, when S (and conse-
quently the supply/demand ratio, S/D

m
) will be very large (Figure 4.24).

 We now see that the predator parameter P
a
 is the prey density at which one 

predator can just gather enough to supply its basic metabolic needs; i.e., where 
S/D

m
 = 1. However, the supply obtained from a given density of prey is also 

dependent on the efficiency of the particular predator in searching out and 
capturing its prey; i.e., S will be higher for a more efficient predator under 
equal prey density levels and, therefore, S must be related to the hunting effi-
ciency of the predator.
 Following the same line of reasoning we can show that the parameter Q

a
, 

the marginal benefit of the prey, is also related to the supply/demand ratio. 
Given that S/D

m
 > 1, then the number of offspring produced to replace each 

dying predator is proportional to (S − D
m
)/D

0
, where D

0
 is the number of prey 



required to meet the energy demand of producing a single offspring. As more 
offspring can be produced from a fixed supply of prey when D

0
 is small, then 

the marginal benefit of the prey, Q
a
, must be proportional to 1/D

0
.

It is important to recognize the relationship between our simplified population 
models and the more detailed and realistic physiological models. Although the 
former are appropriate for evaluating the behavior of generalized population 
systems, as we are doing in this book, the latter are usually much more power-
ful for evaluating the behavior of specific population systems. However, as we 
have seen in this note, both approaches are closely interrelated and the differ-
ences are largely in the perspective of the model builder and in his reasons for 
building the model. We should also realize that both approaches are simplifi-
cations of real life and that population systems can also be viewed at even 
more microcosmic levels of organization; i.e., the organs and their energy 
demands, the cell, the gene or even at the chemical level (Chapter 1).

4.9.  Linear Predation Models. If we assume that the prey population grows “logis-
tically” according to equation (2.6), and that the effect of predation on the 
reproduction and survival of the prey is linearly related to the density of the 
predators, then we can write the prey equation

A A R s A vB At t t t t= + − −− − − −1 1 1 1( )ma a ,

where A
t
 is the density of the prey population at time t, B

t
 is the density of the 

predator population, and v is the vulnerability coefficient of the prey. In reality 
v is a rather complex parameter resulting from the interaction between preda-
tor attack and prey defense behaviors, which determine the rate of attack, and 
whether the prey dies or merely has a reduced chance to survive and reproduce 
when attacked, which determines the debilitating effect, or impact, of an 
attack. The vulnerability coefficient, therefore, includes those predator and 
prey attributes that affect the rate of attack and the impact of each attack on 
the reproduction and survival of the prey.

Fig. 4.24 The dependence of the number of offspring produced on energy supply
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Turning to the predator equation, let us assume that the carrying capacity of 
the predator population is determined by the density of its prey so that from 
text equation (2.6) we get

B B R B eA Bt t t t t= + −− − − −1 1 1 11mb ( / ) ,

where eA
t−1

 = K
b
, and e represents the number of predators that can be sustained 

at equilibrium by each prey, or the efficiency of converting prey into predators. 
In other words, e = w

b
, the marginal benefit of the prey. This equation assumes 

that the predator is perfectly efficient at capturing prey so that P
a
 = 0.

Now when the prey population is at equilibrium A A At t
* ,= = −1  then

R s A vBma a− − =* 0

and, therefore, the equilibrium line for the prey is defined by

A
R

s

vB

s
* = −ma

a a

and we see that the slope of the line, or the marginal cost of predation, is 
W

b
 = v/s

a
. We can also substitute K

a
 for R

ma
/s

a
 to give

A K K vB R* /= −a a ma
.

This equilibrium line will intercept the prey abscissa at K
a
 when the density of 

the predator is zero, and the predator ordinate at R
ma

/v. Thus the predator den-
sity, which reduces the prey population to zero, is P

b
 = R

ma
/v.

The equilibrium line for the predator is defined by

1 0− =
=

B eA

B eA

*

*

/

which is a straight line with slope e. Given a set of parameter values, we can 
use these equilibrium equations to construct a superimposed reproduction 
plane and evaluate it graphically. We can also solve the equilibrium system by 
substituting eA*  for B in the prey equation and K K vB Ra a ma− */  for A in the 
predator equation to obtain

A
K

K ve R

B
eK

K ve R

*

*

( / )

( / )

=
+

=
+

a

a ma

a

a ma

1

1



Although the stability of this equilibrium is not easily solved with our ele-
mentary methods, we can perform numerical steady-state analyses.
 This particular model of predation can be written in continuous time as

dA dt r A K iB A

dB dt r B jA B

/ ( / )

/ ( / )

= − −
= −

ma a

mb

1

1

in which form it is identical to the model proposed by P. H. Leslie (Biometrica, 
vol. 35, p. 213, 1948). It should be noted that the Leslie model is globally stable 
over all parameter space, whereas the discrete-time analogue may be unstable 
if v or e is large due to the time delays inherent in discrete-time systems.
 There are a number of other linear predator-prey models (see the disk that 
comes with this book for their simulations), perhaps the most famous being 
the so-called “Lotka-Volterra” equations (see Note 4.4 for reference). These 
can be written

dA dt r mB A

dB dt nA d B

/ ( )

/ ( )

= −
= −

ma

As you can see, the death rate of the prey is only affected by the density of 
its predators - there is no self-limitation - and the birth rate of the predators is 
proportional to the prey’s density alone rather than to the ratio of predators 
to their prey as in Leslie’s model. The “Lotka-Volterra” equations can also be 
evaluated graphically and, if we do this, we will find that they produce limit 
cycles with amplitude determined by the starting conditions. The model can 
be made more reasonable by including a self-limiting expression in the prey 
equation; damped-stable solutions are then possible.
 A more general model has been proposed by M. L. Rosenzweig and R. H. 
MacArthur (American Naturalist, vol. 97, p. 209, 1963), which includes the 
predator’s functional response in the prey equation. However, an analysis of 
these different formulations of the problem will not shed any new light on 
the predator-prey interaction. For those interested in further discussion of 
simple predator-prey models, they are covered in J. Maynard Smith’s Models 
in Ecology (Cambridge University Press, 1974). Numerous other models of 
increasing complexity abound in the literature. Some of these have been 
summarized in M. P. Hassell’s book The Dynamics of Arthropod Predator-
Prey Systems (Princeton University Press, New Jersey, 1978).

4.10.  Predator-Prey Systems (see Note 4.9 for complete reference).
4.11.  M. E. Solomon (Journal of Animal Ecology, vol. 18, p. 1, 1949) was appar-

ently the first to coin the term “functional response” to describe the changes 
in numbers of prey attacked by individual predators as the density of the prey 
population changes. However, it was C. S. Holling [Canadian Entomologist, 
vol. 91, p. 385, 1959; Memoirs of the Entomological Society of Canada, nos. 
45 (1965) and 48 (1966); and subsequent contributions] who investigated the 
functional response and its components in great detail. Holling also identified 
the three basic types of functional responses (see Figure 4.19 for review).
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4.12.  We can calculate the proportion of the prey population surviving predation, 
p (percentage survival is, of course, 100p), by

p A A A A A= − = −( ) / /a a1 ,

where A is the density of the prey population prior to predation and Aa is the 
number attacked in a unit time interval. The proportion surviving from the 
action of predators with different functional responses can be computed as 
follows:
Type I: Given a constant attack rate then the number of prey attacked by 
predators with type I responses is

A BA A A Ba swhen = <a

and

A B A A B A A Bsa s when or= > =b ,

where α is the rate of attack per predator, B is the density of predators. A
s
 is 

the prey density needed to saturate each predator, and β is the saturation con-
stant. Allowing the predator density to be unity and substituting in the first 
equation we get

p A A A A

p A A A B

= − = − <
= − ≥

1 1

1

a a
b

/

/

when 

   when 
s

s

which means that survival is constant (1 − α) when A < A
s
 and that it 

increases with prey density above the threshold A
s
 (Figure 4.19B).

Type II: If a predator requires t time to handle each prey after it is attacked 
then, of the total time T exposed to the prey, it spends

T tA− a

time in actual search and capture activity. The proportion of the time that is 
available for search and capture thus becomes

( ) /T tA T A− = −a a1 d ,

where δ = t/T. We can insert this expression into the linear type I response to 
account for predators which spend time handling their prey. Thus,

A A BAa a= −a d( )1

or, on rearranging

A
BA

BAa =
+

=
a

g
g ad

1



gives us the well-known “disc” equation derived by C. S. Holling (Note 4.11). 
Substituting in our survival equation, with predator density at unity, we get

p
A

A A A
= −

+
= −

+
1

1
1

1

a
g

a
g( )

,

which shows that the proportion of the prey surviving increases with prey 
density (Figure 4.19B).

Type III: Leslie Real, in an article in the American Naturalist (vol. 111, p. 289, 
1977), suggested a generalized functional response model based on the 
analogy between predator-prey interactions and enzyme kinetics. In this 
sense enzymes can be thought of as “predators” on their substrates. Carrying 
the analogy a step further, we can differentiate between allosteric enzymes, 
which become more efficient at utilizing their substrate as its concentration, 
or “density,” increases; and nonallosteric enzymes, which have a constant 
efficiency. The kinetics of nonallosteric enzyme reactions can be described 
by the well-known Michaelis-Menten equation

A
A

A Aa
i

=
+

e ,

where A
a
 is the amount of substrate utilized, or the number of prey attacked, ε 

is the maximum efficiency of the enzyme, or the maximum attack rate of the 
predator, A is the substrate concentration, or prey density, and A

i
 is an affinity 

constant which specifies the substrate concentration, or prey density, at which 
the enzyme efficiency, or attack rate, is half of its maximum; i.e., A

a
 = ε/2. This 

equation is, in fact, identical to Holling’s “disc” equation with ε = α/γ = 1/δ and 
A

i
 = 1/γ = 1/αδ. However, the enzyme kinetic equation is easily generalized to 

allosteric reactions which give rise to type III responses. In this form

A
A

A A

n

n na
i

=
+

e

where n is interpreted as the number of encounters between the predator and 
prey required before the predator reaches its maximum efficiency (in enzyme 
kinetics it is the number of binding sites on the enzyme molecule). The 
parameter n can be thought of as representing the learning ability of the 
predator, or the rate at which it acclimatizes to a particular prey species out 
of its repertoire. We can see that, when n = 1, this equation reduces to the 
Michaelis-Menten equation, or the Holling “disc” equation.

We can now insert this generalized model into the prey survival equation to 
yield

p
A

A A A

A

A A

n

n n

n

n n
= −

+
= −

+

−

1 1
1e e

( )i i

.
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From this equation we can see that when n > 1 then the survival of the prey 
will decrease with prey density until A = A

i
, but that after this threshold prey 

survival will increase with density (Figure 4.19B). The student is encouraged 
to demonstrate this numerically.

4.13.  Holling originally proposed the type III functional response for animals with 
learning abilities, particularly birds and mammals (see Note 4.11 for refer-
ences). These general predators learn that a particular prey species is availa-
ble and palatable when they encounter it fairly frequently. They then tend to 
search for that species in preference to others and their rate of attack on it 
increases; that is, they switch to the more abundant species in their prey rep-
ertoire. However, as Hassell points out in the Journal of Animal Ecology (vol. 
35, p. 65, 1966), specific invertebrate predators with type II responses, but 
which can only attack prey after they reach a certain density, may produce 
comparable effects. In addition, S-shaped responses have been observed in 
other invertebrate predators (e.g., D. G. Embree in the Canadian Entomologist, 
vol. 98, p. 1159, 1966), which suggests that they may be more common in 
nature than meets the casual eye.

4.14.  We can define the reproduction plane for a prey species under predation by 
an animal with an S-shaped functional response by inserting the type III 
response (Note 4.12) into our elementary population model [equation (2.7)] 
to give

A A R
A

K
A

BA

A At t
t

t
t
n

n
t
n

= + −⎛
⎝⎜

⎞
⎠⎟

−
+−

−
−

−

−
1

1
1

1

1

1m
i

e

 

.

In this model the predators feed on those prey that survive the other density-
dependent factors. It is worth noting that v, the vulnerability of the prey to 
attack of our original model, can be defined as

v
A

A A

n

n n
=

+

−e 1

i

and we see that vulnerability increases as prey density rises towards A
i
, but 

decreases thereafter.
At equilibrium, where A A At t= =−1

* , this equation reduces to

0 1
1

= −
⎛
⎝⎜

⎞
⎠⎟

−
+

−

R
A

K

BA

A A

n

n nm
i

* *

*

e

The equation can be solved for A* (see the paper by D. Ludwig, D. D. Jones, 
and C. S. Holling in the Journal of Animal Ecology vol. 47, p. 315, 1978, in 
which a model for the spruce budworm is analyzed). However, it is much 



easier to solve the equation for B given a particular A*; that is, we can ask the 
question “What predator density must be present in the system given that we 
have a known equilibrium prey density?” Rearranging our previous equation 
we have

e

e

BA

A A
R

A

K

B
R

A

A

K
A A

n

n n

m
n

n n

*

*

*

*

*
*( )

−

−

+
= −

⎛
⎝⎜

⎞
⎠⎟

= −
⎛
⎝⎜

⎞
⎠⎟

+

1

1

1

1

i
m

i

and we can see that when A K* = , or the prey density is at carrying capacity, 
then the predator density must be zero because the second term of the equation 
is zero. However, when A K* < , then B > 0 because all the terms of the 
equation are positive. If we calculate a set of predator densities necessary to 
maintain – a series of different prey equilibria, then we can draw a reproduction 
plane similar to that shown in Figure 4.20B. The only conditions for the system 
to have two potentially stable equilibria are that n > 1 and K > 5.196A

i
. The 

serious student is encouraged to compute at least one such reproduction plane.
4.15.  An interesting demonstration of the effect of the prey’s saturation density, K

a
, 

on the stability of a predator-prey system can be found in J. Maynard Smith’s 
book Models in Ecology, published by Cambridge University Press, 1974. 
On pages 33 to 35 he discusses experiments performed by L. S. Luckinbill 
with Paramecium (prey) and Didinium (predator). Luckinbill was able to 
stabilize an otherwise unstable interaction by cutting the prey’s food supply 
in half. This operation reduced K

a
 to less than one-half of its previous level 

and probably had little effect on P
b
.

 For those interested in a more analytical approach to the problem of preda-
tor-prey interactions, which – nevertheless, arrives at much the same conclu-
sions as we do, Maynard Smith’s book is recommended.

4.16.  There are many examples of unstable predator-prey interactions in simplified 
laboratory environments. Perhaps the best known are G. F. Gause’s early 
experiments with Paramecium and its predator Didinium (see Note 4.4 for 
reference), and C. B. Huffaker’s beautiful series of experiments with predator 
and prey mites (Hilgardia, vol. 27, 1958). Huffaker was also able to show 
that hampering the predators or facilitating the prey’s escape tended to stabi-
lize the interaction (see Figure 4.22).

Unstable predator-prey interactions are also seen in nature, particularly in 
highly simplified agro-ecosystems. An example of an unstable interaction 
between mite predators and their prey in Washington apple orchards is docu-
mented by S. C. Hoyt (Journal of Economic Entomology, vol. 62, p. 74, 1969). 
However, this interaction was more stable when alternative food, in the form of 
different species of mites, was available for the predators.
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4.17  Aphidophagous predators, like ladybirds, syrphids and chrysopids com-
monly occur in agricultural crops, wild herbaceous plants, and other habitats. 
Many species feed on aphids and their efficiency in controlling them is a 
broadly discussed and controversial issue. Their prey, aphids, live in colo-
nies, which are characterized by an initial rapid increase followed by an 
equally rapid decline in abundance resulting in extinction of the colony. The 
decline is not caused by aphid predators or parasites, even if they contribute 
to it. Instead, aphids cause the decline by themselves: they strongly react to 
their own density by switching to production of migrants that look for 
another, more suitable host. Thus, when the aphid density is high, most of the 
newborns leave the colony immediately after reaching adulthood.

The dynamics of different colonies is not synchronized in time, as they feed on 
different host plants with different phenologies. On a large spatial scale, at 
any instant, populations of aphids exist as patches of prey, associated with 
patches of good host plant quality. That is, aphid predators exploit patches of 
prey that vary greatly in quality both spatially and temporally and therefore 
have to find a strategy, how to optimally exploit them.

The adult aphid predator is winged, can easily move between patches, and 
therefore has no problem in finding patches with enough prey items. Thus 
energy is not a limiting factor for its fitness. Its immature stages are confined 
to one patch and if this contains few prey items, the larvae starve and cannibal-
ize: eat each other. Mortality of immature stages due to starvation, cannibalism 
or intraguild predation is enormous: 98–99% and is mainly a consequence of 
low prey numbers at any time during the larval development. Thus egg and lar-
val cannibalism is adaptive in these predators, as eating conspecific competi-
tors will increase the likelihood of survival of a predatory larva.

Because of the immense egg and larval mortality, selection acts mainly on 
optimum oviposition strategies – those that insure the maximum likelihood of 
survival of the offspring – rather than on maximization of the food eaten by the 
predator per unit time, as considered in most optimum foraging theories (see 
the book Foraging Theory by D. W. Stephens, and J. R. Krebs, published by 
Princeton Univ. Press, Princeton, NJ in 1986 for a comprehensive explana-
tion of optimum foraging theories). The optimum oviposition strategy of the 
adult is therefore determined mainly by expectations of future bottlenecks in 
prey abundance, as these will affect survival of its offspring, and not by the 
present amount of prey in the patch, as the adult is not limited by the amount 
of food – it can find another colony, if needed.

A good long-term forecast of the quality of the prey colony becomes espe-
cially important for the ovipositing predator, if the ratio of generation time of 
the predator to that of the prey (generation time ratio, GTR) is large. This is 
because the oviposition strategy of a predator with a long larval developmen-
tal time will depend on a longer projection of the future prey abundance in 
the patch, will therefore include more bottlenecks or higher probability of a 
bottleneck than that of a predator with a short developmental time, and 



consequently must be more conservative in terms of preserving their prey. As 
a result, such predators tend to be less effective in controlling their prey. This 
“GTR hypothesis” seems to hold more generally and those interested in more 
details are referred to the papers by P. Kindlmann and A. F. G. Dixon: When 
and why top-down regulation fails in arthropod predator-prey systems (Basic 
& Appl. Ecol., vol. 2, pp. 333–340, 2001) and Generation time ratios - deter-
minants of prey abundance in insect predator-prey interactions (Biol. Control, 
vol. 16, pp. 133–138, 1999) and references therein.

Aphid predators are a good example of this hypothesis, as their developmen-
tal time often spans several aphid generations, during which the aphid num-
bers vary dramatically. Laying eggs in the presence of conspecific larvae is 
strongly selected against in these predators, because it results in these eggs 
being eaten by older conspecific larvae. In addition, laying eggs late in the 
development of the ephemeral patch of prey is maladaptive, as there is insuf-
ficient time for all the larvae to complete their development. Thus, eggs laid 
by predators late in the existence of a patch of prey are at a disadvantage, as 
they are highly likely to be eaten by larvae of predators that hatch from the 
first eggs to be laid.

Empirical data indicate that several different species of aphid predators have 
evolved mechanisms that enable them to oviposit preferentially in patches of 
prey that are in an early stage of development and avoid those that are already 
being attacked by larvae. Females of these species strongly react to the smell 
of larval tracks of their own species or of other aphid predators by immediate 
ceasing oviposition and flying away from the aphid colony. This response 
strongly reduces the number of eggs laid per patch and consequently their 
effectiveness in regulating the numbers of their prey – aphids. Thus their 
optimum oviposition strategy, which maximizes the fitness of the individual, 
results in conserving their prey (or low impact on its numbers), exactly, as 
stated in the main text. Note that for evolution of this strategy no group selec-
tion (see the following note) is needed.

4.18.  The idea that natural selection may act on groups of organisms, or popula-
tions, as well as on individuals is another subject of controversy amongst 
biologists. The principal proponent of group selection is V. C. Wynne-
Edwards, and those interested in this fascinating subject should consult his 
works (e.g., Nature, vol. 200, p. 623, 1963). He has also summarized his 
ideas in the book Natural Regulation of Animal Populations (edited by I. A. 
McLaren, Atherton Press, New York, 1971). Also in this book is an article by 
D. Pimentel on the co-evolution of predator-prey systems. Pimentel argues, 
and presents data to support his arguments, that predator-prey systems evolve 
stable interactions via genetic feedback, which produces adjustments in the 
efficiency of the predator, the vulnerability of the prey, and/or their reproduc-
tive potentials.
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Chapter 5
Interactions in Space

5.1. Introduction

In our original definition of a population (Chapter 2) we set the spatial limits of the 
system in a rather arbitrary manner. This was done for practical reasons and, in 
particular, because it is often difficult or impossible to identify the real geographic 
boundaries of a population. Our population models (Figures 2.13 and 3.9) dealt 
with the problem of organisms moving into and out of the system by incorporating 
net migration (immigration-emigration) into the density-dependent process of pop-
ulation regulation. That is, we assumed that net migration changed in response to 
the density of the population. If we continue with this line of reasoning, we can 
draw a diagram for the interaction between two populations of the same species that 
occupy two spatially distinct environments as shown in Figure 5.1. In this model 
individuals displaced by competitive interactions from population A enter popula-
tion B through the porous boundary we have set up between them – in reality this 
boundary is nonexistent. This kind of reasoning is convenient because it allows us 
to utilize the theories that we developed in the previous chapters to evaluate the 
dynamics of populations over broad geographic regions. However, as we shall see 
later, there may be better ways to define the spatial boundaries of population 
systems.

If we examine the feedback loop with the shortest possible path created by the 
spatial interaction (the thick line of Figure 5.1), we find it is overall positive: 
E N E N Ea b b a a

+ + + +⎯ →⎯ ⎯ →⎯ ⎯ →⎯ ⎯ →⎯ . For instance, an increase in emigrants 
from population A increases the density of B, which causes increased immigration 
into A, and so on, which means that, if migration is the only density-dependent 
mechanism, then both populations will grow continuously. This observation illumi-
nates the intuitively obvious fact that, when we consider the population over its 
entire range of distribution, the only processes governing its numerical dynamics 
are the birth and death rates. Migration only acts to spread the population over its 
range and to moderate the density of the population in any particular part of this 
range.

We can also see from Figure 5.1 that immigration from adjacent populations 
may disturb the balance between a population and its environment. Even if a 
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population is in a steady state at its saturation density, a large immigration may 
seriously denude the environment and start off a series of oscillations or cycles. 
Later in this chapter we will see that this disturbing influence of immigration is 
extremely important to the dynamics of population systems and, in particular, to the 
spread of pest epidemics.

5.2. Movements in Space

In order to understand how migration influences the spatial dynamics of popula-
tions, we need to look more closely at the movement of organisms and the proper-
ties that affect these movements. Most organisms, particularly animals, have some 
locomotory ability. The most obvious, of course, are those with walking and flying 
appendages, but many less endowed creatures use wind, water, or other more 
mobile organisms to disseminate them and their spores. From an ecological view-
point, we are more interested in what causes organisms to move rather than in how 
they do it. Organisms with locomotory ability may move for numerous reasons, 
but they can be conveniently grouped into (1) those movements that are stimulated 
by the interaction, or the need for interaction, with their own kind, and (2) those 
that are stimulated by interaction with the environment.

Considering the first group, we may find individuals moving towards each other 
(+) for the purposes of mating, attacking their prey, or defending themselves. Such 
movements will usually result in aggregations, or clumpings, of individuals. 

Fig. 5.1 A general model for two populations of the same species interacting with each other 
across arbitrary spatial boundaries through the movement of individuals. Symbols subscripted by 
population: genetic properties, G; environmental favorability, F; population density, N; and 
emigrants, E



Conversely, individuals may move away from each other (−) because of  antagonistic 
confrontations with their fellows over mates, territories, and the like, and this will 
result in the dispersal of individuals into a more uniform spatial distribution. In 
other cases individuals may be completely indifferent (0) towards each other, in 
which case their distribution will be random in respect to their fellows.

Of course organisms also move in response to conditions they encounter in their 
environments. In general we would expect them to move away from unfavorable 
environments and toward favorable ones. Some animals have very complex behav-
ioral mechanisms, which they use to locate favorable conditions for survival and 
reproduction. Even if direct sensory mechanisms are not involved, organisms will 
gravitate toward favorable conditions. For example, movements to escape preda-
tors, to avoid competitors, or to find food and nesting places will take individuals 
away from unfavorable localities, whereas the lack of movement in more benign 
environments will tend to keep them there.

Environments are rarely constant in time and many undergo severe seasonal 
changes. Migration is one mechanism that enables animals to avoid the unfavorable 
seasons. In some cases migration may take the animal to distant places, and the navi-
gational problems inherent in this kind of strategy have produced complex orienta-
tion behaviors in some migratory animals. Other less mobile species are forced to 
remain in place during the unfavorable periods, but avoid the problem by hibernating 
when the weather becomes too cold or aestivating when it becomes too hot.

As we know, organisms may also affect the favorability of their environments by 
overexploiting needed resources or by pollution. In such cases they will tend to 
move on as the environment deteriorates. Aphids are a typical example of this type 
of behavior (see Note 5.13).

The movements of organisms in response to each other and to their environ-
ments causes them to assume patterns in space that are characteristic of that particu-
lar species. These patterns will change in time as the environment changes or as the 
response between individuals changes. Some examples of the type of patterns we 
encounter in nature are given in the following paragraphs.

1. Organisms that respond positively toward each other usually form aggregations 
into herds, flocks, schools, or swarms. As is often the case with such aggrega-
tions, the environment may be severely overexploited and the herds continu-
ously on the move so that the species lives a nomadic existence (Figure 5.2A). 
Many grazing ungulates, some of our flock-tending ancestors, and insects like 
the locust, exemplify this way of life.

2. Antagonistic interactions are usual in territorial species. In this case an individ-
ual or pair marks out a territory, which is more or less fixed in space, and defends 
it against challenges by others of the same species (Figure 5.2B). Territorial ani-
mals usually move only within the borders of their own territory or home range 
and, therefore, they tend to be rather uniformly distributed in space. However, as 
territories will usually be larger in less favorable environments, the density of 
the population will be affected by conditions in the environment.

3. We frequently observe mixtures of patterns (1) and (2). For example, some spe-
cies form aggregations that are antagonistic toward other colonies of the same 
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species – ant nests, lion prides, monkey colonies – which will result in dispersed 
aggregations as shown in Figure 5.2C. Other species form nomadic aggregations 
at certain times and others disperse into territories (e.g., some territorial birds 
and mammals).

4. Some organisms are rather indifferent toward each other, but even so will rarely be 
distributed randomly in the environment. Clusters will be formed by breeding 
pairs and patches denuded by predators to create a nonrandom but haphazard 
mosaic in space. However, movement in response to environmental conditions will 
then tend to even out the distribution again, because dense groups will overexploit 
and sparse groups underexploit the environment. Thus, we will see a continuously 
shifting pattern as the environment changes in response to the exploitation of the 
population and the movement of its predators and competitors.

5. Mixtures of patterns (1) and (4) will also be observed, particularly in opportunistic 
species occupying temporary habitats (the bark beetles discussed in Note 3.5 and 
aphids are a good example). Such species, which are indifferent toward each other 
at certain times but which aggregate at others, create complex spatial patterns in 
which aggregations in one place disappear to reappear in a different place (Figure 
5.2D). Other species, such as whales, seals, and salmon, aggregate at certain times 
for mating purposes, but then disperse over much larger feeding areas.

Fig. 5.2 Some patterns and movements of populations in arbitrarily delimited space: (A) 
Aggregated population moving in unison in response to environmental conditions, (B) territo-
rial pairs. (C) dispersed aggregations, and (D) dispersal at certain times and aggregation at others 
in response to environmental and individual variations



Exodus from a particular environment usually occurs when needed resources are 
depleted, or when the environment becomes intolerable because of physical 
 conditions or the presence of other organisms (competitors, predators, or  pathogens). 
Thus, dispersal is extremely important for those species that denude their resources 
or that inhabit very variable environments. It is not surprising, therefore, that ani-
mals with highly developed dispersal powers, such as the birds and insects, have 
been most successful in utilizing rare or temporary habitats. Birds, for example, 
with their powerful flight and navigational abilities, have exploited tundra and 
arctic environments, which are only favorable for short periods of time each year. 
Insects have evolved equally intricate physiological and behavioral traits for 
dealing with the problems of scarce resources and changing environments. For 
example, bark beetles use mixtures of volatile chemicals to guide their brethren to 
individual weakened trees; female aphids reproduce wingless offspring in favorable 
environments, but winged forms are produced when overcrowding depletes the 
food supply (see also Note 5.13); and locusts go through remarkable changes in 
physiology and form under crowded conditions, which lead to mass exodus from 
the overexploited environment and the terrible migratory swarms which devastate 
all in their path.

In contrast, organisms inhabiting consistently favorable environments tend to be 
less mobile. In fact, dispersal may be disadvantageous for such species because their 
energies are better spent in reproduction, care of their young, outcompeting their 
rivals, or in defenses against predators and pathogens. This point is made clear by 
animals that have evolved poorer dispersal powers than their ancestors; for example, 
the ostrich living in the uniform and endless Sahara and the wingless Douglas-fir 
tussock moth inhabiting the extensive fir forests of western North America. However, 
organisms without good dispersal powers cannot afford to overexploit their environ-
ments and must, therefore, practice conservation by limiting their own numbers. 
Territorial behavior is one of the most successful tactics for achieving these ends.

Southwood (Note 5.1) has argued that the evolution of life-cycle strategies is 
closely tied to the spatial and temporal variability of the environment in which an 
organism lives. As we have seen, dispersal and migration are tactics employed by 
organisms occupying spatially variable environments, while temporal variations 
can be dealt with by entering a dormant stage which is resistant to the unfavorable 
conditions: hibernating bears, diapausing insects, and fungal spores. Thus, the life-
cycle strategies of some organisms (particularly insects subjected to temporal and 
spatial variations in their environments) may be extremely complicated. As 
Southwood emphasizes, the environment, or habitat, acts as a template within 
which the life-cycle strategy of an organism evolves so that breeding, dormancy, 
and dispersal occur when they are most beneficial for the reproduction and survival 
of the species. These ideas are summarized in Table 5.1.
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5.3. Dynamics in Space

We can construct a model of populations interacting over extensive geographic 
areas by dividing the area into a large number of compartments, or a grid, and then 
assume that the rules of population growth and regulation apply within each 
 compartment. In other words, the subpopulations inhabiting each grid element are 
assumed to operate independently of each other except for the movement of indi-
viduals between them. It is also necessary to assume that the environment within 
each compartment is homogeneous and can be classified according to its favorabil-
ity for reproduction and survival of the organism. Although this approach has some 
undesirable features, which we will try to correct later in this chapter, it is the most 
commonly used method for evaluating the dynamics of populations in space.

If we set up a spatial grid, and given a starting distribution of individuals over 
this grid, then the dynamics are evaluated as follows: First, the subpopulations 
within each compartment grow according to the rules derived in Chapter 3 (Figure 
3.9). However, the population regulation process must be subdivided into a density-
dependent birth and death process, and a density-dependent emigration process 
governing the number of organisms leaving the compartment. Because the condi-
tion of the environment determines the intensity of competition, it also controls the 
rate of movement out of the compartment. Hence, the movement of individuals in 
response to their environment is an intrinsic part of the model.

The direction of movement out of compartments will be very important in deter-
mining which adjacent compartments receive immigrants. In the simplest case emi-
grants may leave in equal numbers across all four boundaries. However, directed 
movements across one or two boundaries may occur if the population forms into 
nomadic aggregations or if weather conditions influence the direction of movement - 
for example, small flying insects are affected by wind, rain, and temperature.

The immigration of individuals into a particular compartment will depend on its 
distance, and perhaps its bearing, from grid elements that are sending out migrants. 

Table 5.1 Life-Cycle Tactics for Dealing with Environmental Variations in Time and Spacea

a Modified from Southwood (Note 5.1).



Of course, organisms with well-developed locomotory abilities will travel further 
than more sluggish ones, and conditions in the environment such as atmospheric 
and ocean currents may also be important. However, the net result of the emigration 
process will usually be a movement of organisms from the crowded compartments 
and into the less crowded ones in the more favorable environments (Figure 5.3).

Once the immigrants have entered a compartment they may pass through the 
 population growth process if they are reproductively mature, but they will have the 
characteristic individual rate of increase of their home compartment. Immature indi-
viduals will bypass this and enter the population regulation process, which may cause 
them to die, become mature and pass on to the growth box, or emigrate again.

As you can see, spatially defined population models can become extremely 
complicated and, because of this, analytical solutions are often difficult or impossi-
ble to obtain (however, see Note 5.2). Instead we usually have to resort to computer 
simulations in our studies of populations inhabiting broad geographic regions. 
Perhaps the most elementary example of a spatially defined system is the “Game of 
Life” we discussed in Chapter 1, which you can access and run using the disk that 
comes with this book. Here we saw that the spatial arrangement of individuals was 
very important in determining whether the “population” grew, remained static, or 
declined to extinction (Figures 1.15 and 1.16). There have also been some interest-
ing simulation studies with more realistic population models. We will examine one 
such study below.

The spruce budworm is a moth that feeds on the foliage of spruce-fir stands over 
much of North America. The insect population is normally kept at very low densi-
ties by the action of its predators and the lack of favorable environments – a favorable 

Fig. 5.3 The direction of density-dependent migrations between subpopulations occupying 
adjacent compartments in space; the thickness of the arrows indicates the magnitude of the 
movements across the boundaries
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environment for the budworm is a dense forest of mature balsam fir, at least in the 
eastern part of its range. Once every 30 to 50 years, after a supply of mature firs has 
accumulated, the budworm population escapes from its predators, explodes to 
extremely high densities, and kills most of the mature firs in the forest. There is 
evidence that the main budworm predators have S-shaped functional responses 
which create an N-shaped prey equilibrium line and a predator-prey interaction 
similar to that of Figure 4.21A. The budworm is able to increase above the unstable 
threshold in years with warm, dry springs, and then escapes from the regulation of 
its predators. Thus, the population eruption seems to be initiated by the coincidence 
of mature balsam fir stands and favorable weather conditions. Once the outbreak 
has been triggered the budworm rapidly devours the fir’s foliage and kills most of 
the mature trees. The population then collapses back to a very low density.

Researchers at the Institute of Resource Ecology (University of British 
Columbia), the Canadian Department of the Environment, and the International 
Institute of Applied Systems Analysis have assembled the mass of information on 
the budworm interaction with spruce-fir forests into a spatially defined model of 
the Province of New Brunswick (see Note 5.3). The Province was divided into 
265 compartments of approximately 66 square miles and each compartment was 
classified according to its favorability for the budworm. The dynamics within 
each compartment were governed by interactions between the budworm, its 
predators, and forest and weather conditions as we briefly outlined above. 
Emigration and immigration rates were controlled by density-dependent proc-
esses and the flight characteristics of the adult moth. Simulations on this model 
produced pictures of the space-time dynamics such as that shown in Figure 5.4. 
Outbreaks occurred with a periodicity similar to the natural outbreak cycle, and 
the model proved useful for evaluating the effectiveness of various management 
alternatives.

Fig. 5.4 Simulation of spruce budworm population dynamics in New Brunswick over a 19-year 
period (reproduced by courtesy of the authors from a chapter by W. C. Clark, D. D. Jones, and 
C. S. Holling in the book Spatial Pattern in Plankton Communities, edited by J. H. Steele and 
published by Plenum Press, New York, 1978)



There have been other simulation studies of population dynamics in space, but 
the spruce budworm example will suffice to illustrate the grid approach. We will, 
however, draw on these other examples when we discuss the ecological implica-
tions of spatial interactions in the following paragraphs.

5.4. The Spread and Collapse of Pest Epidemics

The spruce budworm is a particular case of a much more general problem, which 
has plagued man from time immemorial – the spread and collapse of pest  epidemics. 
Pests are organisms that have a negative effect on man’s survival and well-being, 
either as competitors for resources (like the budworm) or as predators and parasites 
of man. Although man, with his technological prowess, outwitted his larger preda-
tors a long time ago, he has had much more difficulty dealing with many disease-
causing microorganisms and with the competitors that ravage his supplies of food 
and fiber.

Many pest organisms remain for long time periods at low, or endemic, popula-
tion levels, and are often tolerated by man when in this condition. However, at cer-
tain times and under certain conditions the pest populations erupt into outbreaks or 
epidemics, which may cause widespread discomfort (flu virus), loss of life (plague 
bacteria), or destruction of food (aphids) and fiber (spruce budworm).

Because of the general nature of the problem of pest epidemics, it is worth look-
ing a little more deeply at the spruce budworm system. First, consider the interac-
tion between the budworm and the forest in the absence of bird predators. The 
condition of the forest, particularly its species composition, density, and maturity, 
determines the favorability of the budworm’s environment and we might expect a 
reproduction plane such as that in Figure 5.5A (the exact form of this plane is 
unimportant to the general problem we are investigating). As the forest grows and 
matures, the environment becomes more favorable for the budworm and its popula-
tion will increase to higher equilibrium densities, but because forest growth is a 
very gradual process, we would not expect any dramatic population changes. Now 
in the presence of a relatively constant population of bird predators the equilibrium 
budworm population will be suppressed, at least until the functional responses of 
the birds begin to saturate. When this occurs, bird predation will no longer act as a 
negative feedback mechanism (see Figure 4.20 in Chapter 4) and the budworm will 
escape from its endemic level. In a slowly maturing stand of balsam firs the bud-
worm population will be maintained at an endemic level by bird predation, but as 
soon as the stand conditions permit sufficient reproduction and survival to disen-
gage the negative predation effect, the population will erupt towards its upper equi-
librium position (Figure 5.5B). Because of the explosive growth of this released 
population it will probably exceed its upper equilibrium level by a large margin, 
denuding its host trees of their foliage and killing many of them. In effect the bud-
worm causes a drastic reduction in the favorability of its environment and the inevi-
table collapse of its own population (Figure 5.5B). We can also see how changing 
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weather patterns can act as a trigger for the epidemic. For example, suppose that 
the population is at B

2
 in Figure 5.5B when a period of favorable weather occurs. 

The population will be carried around the apex and explode. A return to more nor-
mal weather conditions, or even to unfavorable ones, will have no appreciable 
affect on the epidemic trajectory once it has passed the unstable threshold (the 
broken line in Figure 5.5B).

We can also see how emigrants from overcrowded outbreak areas can spread the 
epidemic into adjacent regions. For example, we would expect large numbers of 
emigrants from population B

3
 (Figure 5.5B) because the food supply will have 

Fig. 5.5 (A) Hypothetical reproduction plane for the spruce budworm in the absence of its avian 
predators, (B) the plane when a constant number of bird predators are present showing an 
endemic-epidemic trajectory, and (C) the triggering of an epidemic by immigrations from a nearby 
area. B

1
, B

2
, …, etc., indicate budworm densities at time 1, 2, …, etc., as forest conditions change, 

or following immigrations from surrounding forests



been denuded and the environment made very unfavorable. When these emigrants 
land in other forested areas they will be added to the resident population and may 
raise its density above the outbreak threshold (Figure 5.5C). In this way an outbreak 
epicenter may become the match, which starts a widespread conflagration. The 
epicenter concept is extremely important to applied ecologists because it implies 
that epidemics can be controlled or prevented by treating relatively small areas (the 
 epicenter), which is an alternative to the large-scale and costly treatments that are 
often required to control rampant epidemics (see also Note 5.4).

There are certain features that are common to all population systems that exhibit 
eruptive epidemic behavior, no matter whether they are forest insects or human 
pathogens. The most important is that they all possess critical thresholds separating 
endemic from epidemic behaviors. Of course, understanding the mechanism that 
determines the threshold is crucial if we are to control pest epidemics. In many 
cases the threshold is related to the ratio of susceptible to immune individuals in the 
host population. Using these terms in their broadest sense we can see that a spruce 
budworm outbreak can be triggered when the ratio of “susceptibles” (mature bal-
sam firs) to “immunes” (spruces, hardwoods, and immature firs) reaches a critical 
level – in other words, the environment becomes very favorable (Figure 5.5B). In a 
similar fashion, disease epidemics usually erupt when a large proportion of the 
population is susceptible to infection. This may occur when a large number of sus-
ceptibles migrate into an area, when explosive population growth gives rise to a 
large number of individuals that have not been previously exposed to the pathogen, 
or when a few infected individuals migrate into a susceptible population. Migration, 
as we see, plays just as important role in the epidemiology of diseases as it does in 
forest insects. This is nowhere better illustrated than in man’s migrations, which are 
strewn with the victims of disease epidemics (see Note 5.5).

The concept of a critical population threshold separating low-density endemic 
dynamics from the devastation of a pest epidemic can be extremely useful to the 
pest manager. If the threshold can be identified, then it presents the opportunity for 
predicting pest outbreaks. For example, epidemics of the mountain pine beetle are 
related to the favorability of the environment for the reproduction and survival of 
the beetle (particularly the thickness of the inner bark of lodgepole pines where the 
beetles live) and to the vigor of the trees, which determines their ability to resist the 
beetle attack (Note 5.6). In this case the vigor of the lodgepole pine stand acts, 
much like bird predation on the spruce budworm population, to prevent the beetles 
from utilizing their potential food supply. However, once the beetle population 
reaches a critical density it is able to overwhelm the defenses of vigorous trees by 
massive and rapid attack. It is this cooperative activity, which creates the unstable 
threshold (see Chapter 3). With this information, and data from a number of different 
lodgepole pine stands, we can find the approximate location of the epidemic threshold 
as a function of phloem thickness and vigor of the stand (Figure 5.6). Once the 
threshold function has been derived, the manager can use it to identify those stands 
in his forests that are most likely to experience a beetle epidemic. He does this by 
measuring the phloem thickness and vigor of a particular stand and seeing how 
close it is to the epidemic threshold. Naturally, the nearer a stand is to this threshold 
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Fig. 5.6 The approximate location of the threshold separating endemic (°) from epidemic (•) 
behavior of mountain pine beetle populations in lodgepole pine stands of different phloem thick-
nesses and vigor, where vigor is measured by stand age, density, and periodic growth (see Note 
5.6 for reference)

Fig. 5.7 Three states in time of an idealized epidemic wave spreading from an epicenter

the greater is the chance that a minor environmental disturbance, or a beetle immi-
gration, will push it into the epidemic domain.

The second common feature of many endemic-epidemic systems is that the 
emigration of pests, or infected hosts, from the outbreak epicenter often spreads 
the epidemic into new areas. This may cause the outbreak to proceed in a wavelike 
movement through space (Figure 5.7). However, when the organism has highly 



developed dispersal abilities (e.g., insect pests), when it is transported en masse by 
physical currents (e.g., the spruce budworm on weather fronts), or when the host 
transports them for long distances (e.g., human pathogens), we may observe new 
epicenters being formed at some distance from the original outbreak. These new 
centers may then spread and coalesce into ever-changing patterns of waxing and 
waning infestations (Figure 5.4).

The third characteristic of many endemic-epidemic systems is that climatic 
 variations from the norm may act as a trigger, which sets off the epidemic wave. 
This phenomenon is particularly evident when climatic changes affect the suscepti-
bility of the host. For example, flu epidemics often follow an abrupt change in the 
weather, which places stress on the human host and creates a large population of 
susceptible individuals. Another example can be found in the bark beetles that 
attack and kill trees that are under stress. Changes in the normal weather patterns, 
particularly droughts but in some cases too much rainfall, may lower the vigor of 
large numbers of trees and the beetle population may explode to epidemic 
proportions.

The bark beetles illustrate another characteristic of some epidemic systems. As 
we mentioned previously, when bark beetle populations become large they are 
able to circumvent the defenses of their hosts. Even quite healthy hosts are unable 
to deal with a continuous assault by large numbers of beetles. Similar relationships 
between the pathogenic load and the host’s ability to defend itself are sometimes 
found in other systems. For instance, a healthy person may contract a viral infec-
tion if he is continuously exposed to infected individuals. In these cases, epidemics 
that start in susceptible epicenters may spread through more resistant 
populations.

5.5. Stability in Space

In Chapter 4 we saw that interactions between efficient predators and vulnerable 
prey may be unstable in any given locality, but this does not mean that the system 
will be unstable over a large geographic region. In fact we will see that spatial 
dimensions often act as a stabilizing force in otherwise unstable systems. Once 
again the spruce budworm model can be used as an example. Take, for instance, a 
mature stand of balsam firs, which is killed by a budworm epidemic. The insect 
population will undoubtedly disappear from this locality because there is no food 
to sustain it. In this particular locality the budworm “predator” is very efficient and 
the coniferous “prey” highly vulnerable, thus creating an unstable local system. 
Elsewhere however, budworm populations will be in various stages of the endemic-
epidemic cycle and the overall population will persist until the particular stand 
regenerates and matures to be devastated by subsequent budworm epidemics 
(Figure 5.4).

The effect of space on the stability of predator-prey systems was also demon-
strated by Huffaker’s experiments with mite populations (see Figure 4.22, page 
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132). Huffaker grew populations of herbivorous mites (small spider-like crea-
tures) on individual oranges. When predatory mites were introduced onto or hap-
pened to find an orange bearing prey, they quickly exterminated the prey 
population. Thus, the interaction on a particular orange was unstable because the 
predator was very efficient and the prey vulnerable. However, when a large 
number of oranges were dispersed in space and physical barriers were present, 
which helped the prey to disperse while hindering the predator, the two popula-
tions coexisted for long periods of time. Prey populations were still exterminated 
on oranges that the predators invaded but, in the meantime, immigrants were col-
onizing uninhabited oranges and insuring the persistence of the system (Figure 
5.8). What we observe is a continuous game of hide-and-seek in space, with the 
prey always one jump ahead of its predators. This result is perhaps intuitively 
obvious because an empty orange is of no use to the predator, but forms a very 
favorable environment for the prey. Hence, the prey has the advantage of being 
the first to colonize a new environment and is able to build up a population before 
the predator can find it. Of course, if the predator has very strong dispersal and 
prey-finding mechanisms (i.e., it is very efficient at finding new sources of prey), 
the time advantage may be very short and the system will be in danger of total 
extinction. We are saying, in effect, that stability in space is improved when there 
are long time delays in the predator’s response to the spatial distribution of its 
prey. This is an interesting result because we previously found that time delays 
create instability at any one place. Now we are countering that argument by sug-
gesting that time delays in space act as a stabilizing force.

The effect of space on the stability of theoretical predator-prey systems has 
been investigated by J. Maynard Smith. He found that migration had no appre-
ciable affect on stability when both predator and prey moved immediately to 
adjacent compartments. However, when he simulated a more realistic system, 
based on Huffaker’s experiments, he found that populations that were locally 
unstable could persist indefinitely in space (Figure 5.9). The chances for coex-
istence were improved when the grid was composed of a large number of ele-
ments and when the prey had good dispersal abilities, which ensured that 
unoccupied compartments were colonized as rapidly as possible. In effect, 
when the prey has a high propensity to migrate it increases the jump that it has 
on the predator and, consequently, the delay in the spatial response of the pred-
ator. Maynard Smith’s theoretical simulations produce a dynamic behavior in 
space, which is very similar to the experimental results obtained by Huffaker 
(cf. Figures 5.8 and 5.9), and both demonstrate the important rule that space 
and migration have strong stabilizing influences on population systems (see 
also Note 5.7).

Although most of the experimental and theoretical research on the stability of 
spatially defined systems has been concerned with predator-prey interactions, 
movements in space can also act to stabilize competitive interactions (see Note 5.8). 
The possession of good dispersal abilities can confer advantages to a weak competitor. 
For instance, the weaker species may be able to colonize new or underexploited 
environments very rapidly and hold them temporarily through the advantage of 
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numbers. This is the pioneer or opportunist strategy, which allows the weak com-
petitor to get a “jump” on its stronger rival in much the same way that a prey may 
keep ahead of its predator in space. In addition, continuous immigration into an 
area dominated by stronger competitors may allow a weaker species to persist at 
low numbers, even though the established individuals all succumb to the pressures 
of competition.

5.6. Population Quality in Space

Travel through space requires the expenditure of large amounts of energy. We see 
this in our everyday life in the energy-greedy transportation systems, which move 
man and his products across the globe and into outer space. Other animals also 
expend a large proportion of their energy intake in local movements to find mates 
and food, or to escape predation. Of course, migrations over great distances require 
an enormous output of energy and many migratory species go through a period of 
energy accumulation and storage in preparation for their travels. Because of these 
large energy demands, the well-fed and physically conditioned animal has a greater 
chance of surviving movement through space. In other words, space acts as a kind 
of sieve, which weeds out the weaker individuals and tends to maintain a vigorous 
population. This effect is most clearly demonstrated by nomadic species, which are 
continuously on the move. Obviously those individuals that make up the leading 
edge of the moving herd get first choice at a plentiful food supply, while those at the 
trailing edge may have little or no food, and certainly little choice. In moving herds 
there is a continual competition and jockeying for a favorable position. Individuals 
that have been weakened by malnutrition, wounds, or genetic aberrations fall further 
and further to the rear and become weaker and weaker until they die of starvation or 
are picked off by roving predators, which often trail a moving herd.

Fig. 5.9 Spatial dynamics of a hypothetical predator-prey system where white compartments are 
empty, hatched compartments contain prey only, and black compartments contain both predator 
and prey. Black elements eventually become white as the prey are exterminated (redrawn from 
J. Maynard Smith’s book Models in Ecology, Cambridge University Press, London, 1974)



Space also acts as a sieve to weed out the weaker specimens in less mobile popu-
lations. In these cases individuals tend to emigrate or to produce spores, seeds, and 
other dispersal forms when the environment in which they live deteriorates. Even if 
both healthy and weak individuals emigrate in similar numbers, the healthy are 
more likely to survive to locate and colonize a new favorable environment. 
However, it is possible that the vigorous, well-fed, and genetically superior speci-
mens will have a greater propensity to emigrate. If this is true, and there is evidence 
to support this view (see Note 5.9), then the new environments will be colonized by 
these superior individuals while, at the home front, under-nourishment and disease 
will prevail and the gene pool will deteriorate as the more vigorous genotypes are 
siphoned off. In addition, the new environment will be relatively free of predators 
and diseases, at least for a time, while predators and diseases will run rampant in 
the old environment.

We frequently observe populations of plants and animals, including man, going 
through cycles of growth, overcrowding, decadence, and sometimes extinction in a 
particular locality. Our concept of the population operating as a spatially defined 
system now has the qualities to explain this scenario. Consider an unexploited 
compartment in space that is occupied by a few hardy pioneers – perhaps those that 
escaped from an overcrowded and deteriorating compartment some distance away 
and survived the rigors of migration. Food and space are plentiful, predators and 
disease scarce, and they flourish and multiply. However, we know these idyllic 
conditions cannot last for long. The population grows exponentially, and soon com-
petition for food and space lowers the quality of life and the physiological well-
being of the individual. The environment deteriorates as the food is used up faster 
than it can be replaced, predators begin to invade and reproduce, and disease 
spreads through the crowded population. The weaker members will die in ever 
increasing numbers while the strong, finding the overcrowded and disease-ridden 
environment intolerable, will migrate in search of “greener pastures” to become the 
new generation of pioneers. These pioneers may encounter severe hardships as they 
search through space for a favorable environment, but this process will ensure that 
the new colony will be formed by the hardiest individuals.

Meanwhile, at the home front, conditions will go from bad to worse as food is 
exhausted, pollutants accumulate, and predators and diseases increase (Figure 5.10). 
Emigration of the vigorous genotypes will leave behind a gene pool that becomes 
more and more impoverished of “survival” genes. A collapse is imminent, and 
when it occurs the possibility of local extinction becomes very real. After this final 
disaster the environment is able to rejuvenate slowly to await the arrival of new 
pioneers, or to be exploited by the few remaining survivors.

The spatial scene dominated by these migratory patterns will contain young, 
vigorous, and growing populations; dense populations in which food shortage, dis-
ease, and predators are evident; and collapsing populations in severely deteriorated 
environments. This picture will continuously change in time and space to create a 
mosaic of waxing and waning populations (e.g., Figure 5.4) with a changing quali-
tative structure. This scenario, which may be quite common in nature, leaves us 
with some uneasy feelings when we contemplate the future of mankind. Human 
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history is filled with examples of the rise, decadence, and collapse of cities, 
empires, and civilizations, and of the mass migrations of our forefathers to found 
new and dynamic colonies in new environments (usually, it must be added, at the 
expense of other civilizations). Now, however, the opportunity to migrate has been 
all but eliminated by the population explosion of the last two centuries and the deli-
cate balance of power between nations. Without the spatial sieve and migration, 
what will happen to the quality of our gene pool? Trapped in a more and more 
crowded environment, what will happen to our physiological and psychological 
well-being and the quality of our lives? What effects are the accumulation of 
 pollutants and our industrial exploitation having on the quality of our environment? 
Are some of these effects time delayed so that they will return to haunt our children 
and our children’s children? These questions and many others are not easily 
answered.

In the preceding sections of this chapter we have seen that population systems 
that exhibit cyclic instability at any particular place persist in a relatively stable 
condition over large geographic regions, and that migration plays a critical role in 
the persistence of the system. However, it should be emphasized that many, if not 
most, species remain at much more constant densities over long periods of time 
throughout their ranges of distribution. In these species migration plays a less 

Fig. 5.10 Mortality of gypsy moth larvae caused by various natural mortality agents as the moth 
population goes from very low to very high densities, showing that mortality from disease and 
starvation becomes extremely severe in the dense populations. It is also interesting that vertebrate 
predators (mice, skunks, and birds) cause higher percentage mortality when population density is 
low, suggesting that their functional responses can create a low-density equilibrium (i.e., an 
N-shaped prey equilibrium line as shown in Figure 4.20) (reconstructed from a paper by 
R. W. Campbell entitled “The gypsy moth and its natural enemies,” published by the U.S. 
Department of Agriculture, Information Bulletin No. 381, 1975)



important role in the space-time dynamics and many have rather sessile habits or, 
at least, more poorly developed locomotory abilities. These species will usually be 
generalists or specialists whose energies are channeled into defense against preda-
tors and diseases, aggressive territorial behavior, and care of their young, rather 
than into migration. It is not surprising, therefore, that in our brief look at the opera-
tion of population systems in space, our attention has been diverted toward the 
opportunistic species that is forever reaching into space for new environments to 
conquer. Man’s reach into outer space is perhaps, the ultimate act of an  opportunistic 
species.

5.7. Environmental Stratification

Throughout this chapter we have used the grid approach to evaluate the space-time 
dynamics of population systems. To do this we had to assume that each grid ele-
ment contained an environment of uniform favorability for the species in question. 
However, the boundaries separating environments of differing favorability do not 
change along grid lines but rather in response to climate and the physical charac-
teristics of the landscape. Climate is the overriding force that molds the environ-
ments of all organisms. Naturally, if climate is always unfavorable in a particular 
area, a species cannot persist there, and so climatic conditions will determine the 
outer boundaries of the species’ distribution in space. Within this broad distribu-
tional range, local climate will vary according to topological characteristics of the 
landscape. For example, the altitude and direction of the slope of the land may 
cause severe variations in local climates – slopes facing the sun and lower eleva-
tions being warmer and drier than their counterparts. These regional climates, 
together with the local soil and substrate conditions, set the framework within 
which plant communities evolve, which in turn set the stage for evolving animal 
communities. Thus, the favorable environment for a predator is much more restricted 
than that of the herbivore on which it feeds, and the herbivore’s is more restricted than 
its food plant’s. This is because they are dependent on the presence of their food 
resources as well as favorable climatic conditions.

A geographic region can be stratified into zones of favorability for a particular 
organism if we know how climate, and the plants and animals present, affect the 
reproduction and survival of that species. This idea has been most fruitful in the 
classification of plant habitats, a habitat being the environment in which a species 
normally lives. In this way geographic areas can be divided into zones that favor the 
growth and reproduction of certain plant associations to produce what are often 
called habitat-type maps. Plant habitats are recognized by a distinctive combination 
of vegetation growing on a particular site, and each has a characteristic pattern of 
development toward a climax community. For this reason, habitat-type classifica-
tions have proven useful for predicting the succession of plants that will occupy a 
given area and the eventual climax association (see Note 5.10). Forest and range 
managers have been most active in the application of the habitat-type concept. 
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However, the same principles are equally useful for classifying the environments of 
animals.

Some of the more successful attempts at classifying, or stratifying, environments 
have been done with forest insect pests under the guise of “risk classifications,” 
where a high-risk environment is very favorable for the pest and is, therefore, in 
danger of being damaged (see Note 5.11). For example, a dense stand of mature 
balsam fir would be in danger of a spruce budworm outbreak and would, therefore, 
be classified as high risk. Another example of environmental stratification is illus-
trated in Figure 5.11. Here an area of the Gallatin National Forest in Montana has 

Fig. 5.11 Stratification of part of the Gallatin National Forest into zones of favorability for the 
mountain pine beetle. The white background represents very unfavorable habitats – forest or other 
land occupied by non-host plant species. Unfavorable – elevation over 2500 meters or small pines 
less than 5 inches diameter at breast height; moderately favorable – elevation under 2500 meters, 
trees 5 to 11 inches DBH and more than 80 years old; favorable – elevation under 2500 meters, trees 
greater than 7 inches DBH and 80 years old but mixed with other species; very favorable – elevation 
under 2500 meters, trees greater than 11 inches DBH and 80 years old (redrawn from U.S. Forest 
Service, State and Private Forestry, Missoula, Montana, Survey Report 76-5, prepared by M. D. 
McGregor, D. R. Hammel, and R. C. Lood)



been subdivided into zones of favorability for the mountain pine beetle. These bee-
tles reproduce most successfully in the older larger diameter lodgepole pines grow-
ing in the lower elevations (see also Note 5.12). These stands are in the greatest 
danger or, from the point of view of the forest manager, pose the greatest risk of 
being killed by the bark beetle. As we know from our previous discussion, out-
breaks originating in these stands may then spread into the less favorable areas to 
create a general conflagration.

The stratification of an area according to its favorability for a particular species 
allows one to see, at a glance, the potential spatial distribution and abundance of 
that species. Within each zone of favorability the population dynamics should fol-
low a particular trajectory because the environment is roughly homogeneous. The 
most serious disadvantage of the environmental stratification approach is that rather 
complex spatial mosaics are produced which are difficult to handle mathematically. 
However, recent applications of certain mathematical techniques are helping to 
solve this problem (Figure 5.12).

There are a number of advantages of environmental stratification over the more 
usual grid approach. First, we can see from Figure 5.11 that the environment is 
rarely homogeneous within a grid element, and this violates one of the assumptions 
of the grid method. Second, the stratification method exactly specifies the bounda-
ries and the area of each environmental patch. The size of a particular environmen-
tal patch of given favorability is quite important to dispersing organisms because 
their chances of locating the patch improve as the patch gets larger. In addition, 
epidemiological studies have shown that patch size is important in the initiation of 
epidemics; that is, there is a critical patch size below which an epidemic cannot be 
triggered internally, although it can, of course, be set off by immigration from sur-
rounding areas (see Note 5.2). Lastly, the stratification of forest, range, and agricul-

Fig. 5.12 The mathematical representation of an area of forest land according to its favorability 
for the larch casebearer, a small moth feeding on larch foliage: 1 = low, 2 = moderate, 3 = high 
favorability. The height of the landscape is a relative measure of the potential carrying capacity 
for the insect (reproduced with permission from a paper by G. E. Long in Ecological Modelling, 
vol. 8, p. 333, 1980)
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tural lands into zones of favorability for particular plant and animal associations 
provides a basic framework for the management of these populations.

5.8. Chapter Summary

In this chapter we looked at the interaction between populations of the same species 
inhabiting different environments separated in space. These interactions involve the 
movement of organisms in space and their immigration into favorable environments 
and emigration out of unfavorable ones. The major points are summarized below:

1. Individuals move into or out of particular environments as a result of  interactions 
with their own kind or with their environment. These interactions cause the 
population to assume a particular spatial distribution and pattern of movement 
through space, which is usually characteristic of the species.

2. Organisms have evolved complex life-cycle strategies for avoiding harsh 
 environments and exploiting variable and temporarily favorable environments. 
These strategies usually involve dispersal, dormancy, or a combination of both. 
Species with well-developed dispersal powers have been most successful in 
exploiting rare or temporarily favorable habitats.

3. Population dynamics in space can be evaluated using a spatially defined grid and a set 
of rules governing the movement of individuals between grid elements; for example, 
density-dependent emigration rates, species-specific dispersal  characteristics, and envi-
ronmental properties such as air and ocean currents and measures of favorability.

4. Pest epidemics are usually set off in a particular locality, or outbreak epicenter, 
by environmental changes that favor the rate of increase of the pest or put stress 
on their hosts. Emigrants from these epicenters may then spread the epidemic 
into surrounding areas by raising the resident population above a critical epi-
demic threshold. The concepts of epicenters and outbreak thresholds are of great 
importance in pest management.

5. Spatial interactions between populations tend to stabilize systems that might be 
highly unstable in any one place. For example, in unstable predator-prey interactions 
the prey can escape in space by colonizing new environments, whereas the predator 
usually follows after some period of time. In this way, time delays in the response 
of the predator to prey density, which may cause instability at a single location, act 
to stabilize the dynamics in space. The same rules apply equally to unstable 
competitive interactions where the weaker competitors often have superior dispersal 
powers and are thus able to keep ahead of their more competitive rivals.

6. Space may act as a sieve to weed out the physiologically or genetically weaker 
migrants so that new environments are colonized by only the hardiest individuals. 
With time, however, these new colonies may deteriorate as the stronger individuals 
leave the overcrowded conditions and as predators, diseases, and pollutants accumu-
late. Thus, the quality of populations may change dramatically in space and time.

7. Climatic and topographic variations determine the spatial favorability of an organ-
ism’s environment and, therefore, the distribution and levels of abundance of the 



species. Plant and animal communities evolve within the physical framework set 
by these parameters. Thus, geographic regions can be stratified according to their 
favorability for different organisms, and this provides the manager with a frame-
work for predicting the dynamics of particular species and communities.

Notes

5.1.  For those interested in further readings on the subject of migration and 
 dispersal in relation to environmental or habitat conditions, the work of T. R. E. 
Southwood is suggested as a starting place. In particular, his articles in 
Biological Review (vol. 37, p. 191, 1962) and in the Journal of Animal Ecology 
(vol. 46, p. 337, 1977) are recommended. In the latter paper, Southwood devel-
oped the idea of the habitat acting as a template for the evolution of life-cycle 
strategies, with migration and dormancy as the main tactics for dealing with 
environmental variations in time and space.

5.2.  When a species is introduced into a favorable environment where it was not 
previously present, we are able to observe its spread through the new environ-
ment from the point of introduction. One can develop an analytical model of 
this expansion through space by assuming that dispersal is effectively random 
within a large geographic region. A thorough mathematical analysis of ran-
dom dispersal was published in 1951 by J. G. Skellam in Biometrika (vol. 38, 
p. 196), in which he developed a theory of dispersal analogous to Brownian 
motion and the diffusion of gases. With the additional assumption that an 
organism invading a new environment has unrestricted population growth, 
Skellam showed that the rate of spread is approximately constant, being pro-
portional to the maximum individual rate of increase and the dispersal powers 
of the organism, and that the area occupied by the population increases line-
arly with the square of the time from introduction. This result is analogous to 
the well-known Inverse Square law, and can be written

A r a t or A at rm− =2 2 ,

where A is the area occupied, r
m
 is the maximum instantaneous rate of per 

capita increase, a is the coefficient of dispersal, and t is the time from introduc-
tion. Skellam found good correspondence between his theory and data for the 
spread of the muskrat in central Europe after its introduction in 1905. The the-
ory has also been used to describe the spread of the larch casebearer in western 
North America by G. E. Long (Environmental Entomology, vol. 6, p. 843, 
1977). In this case the relationship between A  and t had three linear seg-
ments (see Figure 5.13) which Long interpreted as a period of adaptation to 
the new environment where the rate of spread was fairly low, a maximum rate 
of spread of the adapted insect, and a period of stabilization when the insect 
was approaching saturation of the area. Long also modeled the spread of a 
parasitic wasp, which was introduced to control the foliage-eating casebearer, 
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and came to some interesting conclusions concerning the biological control of 
the casebearer.
Skellam’s theory provides a convenient analytical platform for evaluating the 
spread of a population from a point source. However, when movements are 
occurring from many different points in space the analysis becomes less trac-
table and we usually have to resort to simulation. On the other hand, systems 
such as the spruce budworm-forest interaction discussed in this chapter can be 
evaluated analytically by introducing Skellam’s diffusion theory into the 
single compartment population model. This has been done by D. Ludwig, 
H. F. Weinberger, and D. Aronson, as reported by W. C. Clark, D. D. Jones, 
and C. S. Holling in the book Spatial Pattern in Plankton Communities (edited 
by J. S. Steele, Plenum Press, 1979). One of the most interesting results of this 
analysis was that a critical patch size was necessary for the spruce budworm 
population to persist; that is, the patches of favorable  environment, mature 
balsam fir, must be greater than some critical size before  budworm outbreaks 
can occur.

5.3.  A description of the spruce budworm model can be found in the Proceedings 
of a Conference on Pest Management (edited by G. A. Norton and C. S. 
Holling, published by the International Institute of Applied Systems Analysis, 
Laxenburg, Austria, 1977). The population dynamics of the budworm, on 
which the model was based, is reported in detail in the Memoirs of the 
Entomological Society of Canada, no. 31, 1963 (R. F. Morris, editor).

5.4.  For those interested in pursuing the theory of insect epidemiology, later 
developments are summarized and extended in the paper by the senior author 
of this book in Researches in Population Ecology (vol. 19, p. 181, 1978). In 

Fig. 5.13 The spread of the larch casebearer in northern Idaho (redrawn from Long; referenced 
in this note)



this paper he also discusses the roles of space and dispersal in the spread of 
epidemics and the concept of epidemic thresholds.

5.5.  Kenneth Watt provides a succinct summary of the dynamics of epidemics in 
Chapter 6 of his book Ecology and Resource Management (McGraw-Hill 
Book Company, New York, 1968), which – together with the references cited 
therein – should form a good starting point for those interested in delving into 
the voluminous literature on the subject of disease epidemiology.

5.6.  Because thresholds describe the boundary between two distinct system behav-
iors, they represent transient system states and as such cannot be directly 
observed. Thus, the direct empirical determination of an epidemic threshold is 
usually impossible. However, thresholds can sometimes be approximately 
located, as was done in Figure 5.6, by plotting data from a number of endemic 
and epidemic states in the phase space of the critical variables. The critical vari-
ables can often be separated into two sets, those that determine the  potential 
epidemic behavior (e.g., stand conditions in the case of the spruce budworm), 
and those that enforce the endemic equilibrium by preventing this potential 
from being attained (e.g., the density of insectivorous birds). In the case of the 
bark beetle illustrated in Figure 5.6, the potential beetle population is deter-
mined by the number of thick-phloemed trees in the stand that are favorable for 
reproduction and survival. However, the beetle may be prevented from utilizing 
most of these trees if they are vigorous and can resist the beetle’s attack. If these 
variables can be measured in a number of stands that contain endemic and epi-
demic beetle populations, then the position of the epidemic threshold can be 
approximated by drawing a line separating the two population behaviors.

For those who wish to pursue the subject of threshold theory, they are referred to 
the paper by the senior author of this book in Researches in Population Ecology 
(Note 5.4). Details of the ecology and epidemiology of the mountain pine beetle, 
and the derivation and application of threshold functions, can be found in the 
proceedings of a symposium on the Theory and Practice of Mountain Pine Beetle 
Management in Lodgepole Pine Forests, edited by A. A. Berryman, G. D. Amman, 
R. W. Stark, and D. L. Kibbee and published in 1978 by the Forest, Wildlife and 
Range Experiment Station of the University of Idaho, Moscow. A more general 
view of the theory of thresholds by this author was published in a book edited by 
G. R. Conway entitled Pest and Pathogen Control: Strategy, Tactics, and Policy 
Models (Wiley Interscience, New York, 1981).

5.7.  The effect of predator movements on the stability of predator-prey interactions 
has also been evaluated by considering the tendency of predators to aggregate in 
areas where their prey are most abundant. This aggregation effect can be thought 
of as a response by the predator to the favorability of its environment: When 
food is scarce in a particular area the predator will move greater distances 
searching for prey and this will cause it to move away. When food is abundant, 
it will encounter prey more frequently after moving only short distances and, 
therefore, it will tend to remain in the same area. For obvious reasons, animals 
with learning abilities will have much stronger tendencies to remain in areas 
where their food is abundant.
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The net effect of predator aggregations is to keep the predators in regions of 
dense prey populations and to accentuate the time delay in exploiting newly 
established prey populations. As we know, this will tend to stabilize the preda-
tor-prey system in space.
A number of theoretical models have been built to examine the effect of 
predator aggregations on the stability of predator-prey systems and they all 
show that stability is increased by such behaviors. For those interested in 
pursuing this subject, Michael P. Hassell presents a detailed review in his 
book The Dynamics of Arthropod Predator-Prey Systems, published by 
Princeton University Press, New Jersey, 1978.

 5.8.  One of the interesting results of Skellam’s analysis of the dispersal process 
(see Note 5.2) was that a weak competitor can persist in space, even when 
outcompeted in a particular area, provided it has much stronger dispersal 
 powers than its rivals. We reached this same conclusion in Chapter 4 when 
we discussed the strategy of the opportunist.

 5.9.  The theory of qualitative population changes in space was pioneered by W. 
G. Wellington in his studies of a forest defoliator, the western tent caterpillar. 
Wellington showed that the more vigorous individuals (phenotypes, or per-
haps genotypes) were more prone to move out of overpopulated areas and 
that the remnants were more susceptible to predation and disease. These 
qualitative changes, operating within a highly variable environment, enabled 
the insect population to persist in space and time. Wellington and his col-
leagues also developed a spatially defined computer simulation model, much 
like the spruce budworm model, which produces scenarios of population 
buildup, expansion, deterioration, and collapse. For those interested in pursu-
ing this fascinating study the following papers are recommended: W. G. 
Wellington, Canadian Entomologist, vol. 96, p. 436 (1964) and vol. 97, p. 1 
(1965); W. G. Wellington, Canadian Journal of Zoology, vol. 38, p. 289 
(1960); W. G. Wellington, P. J. Cameron, W. A. Thompson, I. B. Vertinsky, 
and A. S. Landsberg, Researches on Population Ecology, vol. 17, p. 1 (1975); 
and W. A. Thompson, P. J. Cameron, W. G. Wellington, and I. B. Vertinsky, 
Researches on Population Ecology, vol. 18, p. 1 (1976).

Data from other animal populations, such as lemmings and small rodents, seem 
to support Wellington’s theory. In particular, vole populations exhibit dramatic 
genetic changes in response to population density as demonstrated by C. J. 
Krebs and J. H. Myers (Advances in Ecological Research, vol. 8, p. 267, 1974).

5.10.  The concept of “habitat type” for classifying land according to its potential 
for supporting a particular vegetational climax association was first intro-
duced by Rexford and Jean Daubenmire in the Technical Bulletin of the 
Washington Agricultural Experiment Station (no. 60, Washington State 
University, Pullman, 1968). Habitat-type classifications are now used exten-
sively throughout the Rocky Mountain states as a basis for stratifying and 
managing public lands administered by the United States Forest Service.



The concept of habitat type is essentially the same as our ideas of environ-
mental favorability. After all, a habitat is nothing more than a particular 
environment where a particular organism lives. The habitat type is, therefore, 
a measure of the favorability of that environment. Because we have devel-
oped our population theory around the more general concept of environment, 
we will attempt to use the term “habitat” rather sparingly (see also Note 3.7 
for the synonymous term “habitat suitability” introduced by Fretwell).

5.11.  One of the first, and perhaps most successful, risk classifications systems was 
designed by Paul Keen (Journal of Forestry, vol. 34, p. 919, 1936). Keen clas-
sified ponderosa pines according to their risk of attack by the western pine 
bark beetle. Although the original classification has been modified consider-
ably with time, it is still used as the basis for ponderosa pine management in 
certain areas of California. High-risk trees, which are favorable environments 
for reproduction of the destructive bark beetle, are selectively harvested so 
that the beetle population rarely reaches destructive levels.

5.12.  The risk classification map shown in Figure 5.11 was based on a system 
designed by G. D. Amman, M. D. McGregor, D. B. Cahill, and W. H. Klein 
(U.S. Department of Agriculture Forest Service Technical Report INT-36, 
1977). In this system risk categories are assigned according to the age, mean 
diameter, and elevation of the stand of lodgepole pines; older, large diameter 
stands growing at low elevations being at greatest risk. More recent studies 
reported by R. L. Mahoney and A.A. Berryman in the book Theory and 
Practice of Mountain Pine Beetle Management in Lodgepole Pine Forests (see 
Note 5.6 for complete reference) suggest that this classification system can be 
improved by including information on the vigor of the stand; that is, its density 
and periodic growth rate. In this way the position of the stand relative to the 
outbreak threshold can be estimated (see Note 5.6 and Figure 5.6).

5.13.  Within the aphids (Hemiptera: Homoptera), polyphenism, i.e., environmen-
tally determined phenotypic differences, is one of the key factors determining 
their importance as pest species. Wing (alary) polyphenism and polyphenism 
associated with the mode of reproduction are the most widely known. Wing 
polyphenism is essential for the aphid life cycle and, by allowing migration 
to fresh resources, it may contribute to determining the overall fitness of an 
aphid clone. Aphids have complex life cycles but during the summer most 
species reproduce asexually and live as clonal, fast-growing colonies. 
Depending on environmental cues such as day length and temperature, these 
colonies produce sexual morphs in the autumn when mating occurs. Ten per 
cent of aphid species are host alternating (heteroecious), moving between 
woody and herbaceous host plants according to season. Migration between 
the two different species of host plant clearly requires winged morph produc-
tion by the colony. Even for non host-alternating (autoecious) species, how-
ever, wing induction is important, as winged morphs allow a clone to take 
advantage of several individual host plants during a season when the quantity 
and quality of the host plants change. Thus winged morph production in 
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aphids is a phenotypic trait that has traditionally been seen as a response to 
unfavorable environmental conditions: when aphids destroy the host plant, or 
when the host plant quality deteriorates for other reason (e.g., the amount of 
nutrients declines in trees during the summer) they produce winged morphs 
and fly away to find another, more suitable host. For those interested in 
details of this phenomenon, we recommend the paper by C. B. Muller et al.: 
The role of nutrition, crowding and interspecific interactions in the develop-
ment of winged aphids, published in Ecological Entomology, Vol. 26, 
pp.330–340, in 201.



Chapter 6
Interactions Between Many Species (Ecological 
Communities)

Community ecology is a discipline that deals with the interrelationships between 
assemblages of plant and animal populations that live together at a particular time 
and in a particular place. A large body of information and theory has developed 
around this branch of ecology, which would be sufficient for a book in its own right. 
Therefore, it is not the purpose of this chapter to present an exhaustive treatment of 
community ecology, but rather to form a link between our concepts of population 
dynamics and those of community ecology.

6.1. Community Structure

The assemblages of plant and animal populations that make up ecological commu-
nities often possess well-defined spatial boundaries, which separate them from 
other communities. These boundaries can usually be recognized by rather abrupt 
changes in the dominant species in the community (usually plants but sometimes 
animals, as in coral reefs), or in the physiographic structure of the landscape. Thus, 
we recognize a grassland community from an oak-hickory community, a coral reef 
from a sandy bottom community, and so on.

The characteristic fauna and flora, which make up a typical community, interact 
with each other as cooperators (mutualism or symbiosis), as competitors for common 
resources, and as predator and prey. The interaction network linking the different spe-
cies is usually called a food web or food chain, indicating that the primary interactions 
are over food, either through eating one another or competing or cooperating with one 
another for food resources. At the base of all food chains are the producer organisms, 
which synthesize carbohydrate and protein from raw materials. Plants, of course, 
perform this function through the basic process of photosynthesis, where the raw 
materials – water, carbon dioxide, and energy in the form of sunlight – are combined 
to produce carbohydrates, the basic building blocks of all biological organisms. Other 
raw materials, in the form of mineral nutrients and salts (nitrates and phosphates in 
particular), are used to create amino acids and their protein derivatives.

Herbivores, which feed on the producer organisms, have the same problems as all 
predators in maximizing their own numbers while practicing conservation. Because 
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of the requirements of conservation, and because conversion of plant biomass into 
herbivore biomass is rather inefficient, the standing crop of herbivores must be con-
siderably less than that of the food plants. For the same reason, carnivore biomass 
will be much less than that of its herbivorous food. Thus, we find a pyramid of numbers, 
or more correctly biomass or standing crop, such as that in Figure 6.1, in most eco-
logical communities. It is evident from this diagram that food chains have finite 
length, which is dependent on the efficiency of energy conversion between trophic 
levels. In fact, we will rarely find food chains with more than three or four trophic 
levels; for example, plants, herbivorous insects, parasitoids, and hyperparasitoids. 
Occasionally food chains with five trophic levels can be found, particularly in the 
ocean where the standing crop of producers is extremely large; for example, phyto-
plankton, zooplankton, fish, seals, killer whale.

Each trophic level in an ecological community will be composed of one or more 
species, which may compete, or sometimes cooperate, with each other for resources. 
The overall interaction network can be represented by a community web, or interac-
tion matrix, such as that illustrated in Figure 6.2. The community structure is defined 
by the signs of the interaction effects and the feedback loops that they create. We can 
see that, in addition to the competitive (− −), predatory (+ −), and other feedback 

Fig. 6.1 A trophic pyramid of biomass or standing crop

Fig. 6.2 The structure of a simple community composed of three producers, two herbivores, and 
a carnivore



loops that link two species together, we also have feedback loops that involve three 
or more species. For example, in Figure 6.2 we have the feedback loop, 
C H H C1 1 2 1

− − +⎯ →⎯ ⎯ →⎯ ⎯ →⎯ ,  which involves a carnivore and two herbivores. 
This feedback loop, which has two negative and one positive link, has an overall 
positive feedback effect, which we would expect to cause instability in the system. 
On the other hand, the four species loop, E N E N Ea b b a a

+ + + +⎯ →⎯ ⎯ →⎯ ⎯ →⎯ ⎯ →⎯ . 
has an overall negative feedback effect, which should help to stabilize the system. 
An important question, therefore, is whether the combination of all these loops pro-
duces a system that is stable or unstable and, if it is unstable, what adjustments in 
the structure are necessary to create a stable community. We will address these ques-
tions in the next section of this chapter.

6.2. Community Stability

The stability of an ecological community is determined by the properties of the 
individual populations and the network of interactions linking these populations 
together. When the number of species present in the community, and their relative 
abundance, remains fairly constant in time, then the community is considered to be 
stable. Because communities are subject to unpredictable variations in their physi-
cal environments, a stable community is also one that can recover its characteristic 
composition and relative abundances following an environmental disturbance. That 
is, it is resilient to disruptive influences, whether they are natural or man-made (see 
Chapter 3 and Note 3.9 for a discussion of resilience).

One of the central tenets of classical ecology is that complex communities tend 
to be more stable than simple ones. This doctrine was based largely on the observa-
tion that the complex communities of tropical regions are, on the whole, more sta-
ble in time than the simple communities of temperate regions, which are often 
characterized by large-scale population fluctuations, pest outbreaks, and the like. In 
the seventies, however, this belief has been challenged by mathematical arguments 
that suggest that systems made up of complex interaction networks are less stable than 
simple ones (see Note 6.1). In fact, Robert May presented the contrary opinion that 
stable communities may become more complex because they are less subject to 
external disturbances; that is, stability permits complexity rather than the other way 
around as proposed by classical theory. In this chapter we will concern ourselves 
less with the problem of complexity versus stability and more with the conditions 
that are required for organisms to coexist in ecological communities.

Because communities may be composed of a large number of species and have 
an extensive interaction network, we need to develop a less complicated model for 
the individual population system. We can do this by reducing the details of the 
population system into a single state description and relegate the feedback structure 
to a single loop. When species are combined to form communities we will obtain a 
feedback diagram with self-loops, S’s, feeding back to the individual populations 
and interaction loops, C’s, linking them together (Figure 6.3). Each circle, or node, 
in this diagram represents the state of a particular population, usually its density or 
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biomass, and the arrows represent the direction of the interactions (note that a dif-
ferent convention was used in our block diagrams where boxes represented interac-
tion processes, and arrows, population state variables). The impact of each 
interaction is specified by a parameter, whose sign determines whether the effect is 
positive or negative. A feedback loop is defined as an interaction or a series of 
interactions that eventually return to the starting node. As we know, the overall 
effect of a feedback loop is the product of all its interaction effects. Thus, the feed-
back between A and B in Figure 6.3 is (− C

ab
)(− C

ba
), which we recognize as the 

positive feedback loop C
ab

 C
ba

 caused by competition between the two species for 
common resources. Therefore, the system defined in Figure 6.3 is analogous to the 
more complicated two-species competition model of Chapter 4.

The general qualitative stability of feedback systems can be evaluated using the 
techniques of loop analysis (see Note 6.2). Loop analysis involves some rather for-
midable mathematics, so we have attempted to abstract a less formal, and hopefully 
more intuitive, version for the purposes of this book. To perform a loop analysis we 
first have to assume that the system is at or near equilibrium. In other words, we 
will perform a steady-state analysis on the system in the neighborhood of its equi-
librium point, and ask the question “Will the system return to this equilibrium fol-
lowing a small displacement from it?” From our knowledge of general systems 
theory we know that equilibrium can only be stable if it is dominated by negative 
feedback. The same principle holds in loop analysis; that is, the total community is 
stable if, and only if, negative feedback dominates at all levels of organization. The 
levels of organization identify those feedback loops that involve one, two, three, 
etc., species. Hence, in Figure 6.3 two feedback loops involve only one species and 
these are S

aa
 and S

bb
. At the second level we have the loop between both species C

ab
 

C
ba

 and, in addition, the two separate loops S
aa

 and S
bb

 because, once again, two 
species are involved. Loops that are present at a level of organization but do not 
share common nodes are called separate or disjunct loops, while those that share 
nodes are joined or conjunct loops. Thus, Figure 6.3 contains one conjunct and one 
disjunct loop configuration at the second level of organization.

Fig. 6.3 A simple community composed of two species that are self-regulating and compete with 
each other for common resources, showing loop analysis at level 1 and 2



When the sum of the feedback loops at a particular level is negative, then the 
system is said to be qualitatively stable at that level of organization. For the total 
system to be stable, the sums of their feedback loops at all levels of organization 
must be negative.

Let us now evaluate the qualitative stability of the system depicted in Figure 6.3. 
The total feedback at level 1 is

 

F S

S S S S

1 = ∑

= − + − = − +
ij

aa bb aa bb( ) ( ) ( )  (6.1)

and the system is stable at this level of organization. At level 2 we have a conjunct 
loop plus the product of the disjunct loops, so that

F C C S S2 = + − −( ) ( )( ).ab ba aa bb

However, the rules of loop analysis insist that, when all disjunct loops are nega-
tive, then their effect on the feedback at that level must also be negative. Therefore 
we have to change the sign (see Note 6.3) so that

 

F C C S S

C C S S

2 = −

= −

Σ Σij ji ii jj

ab ba aa bb  (6.2)

The total feedback at level 2 is ambiguous because we have a negative and a 
positive term. This means that, in order to answer questions concerning the overall 
stability of the system, we need to know the magnitudes of the parameters. For 
example, it is easy to see that the community is stable if

S S C Caa bb ab ba> ,

because then F
2
 will be negative.

This example illustrates the power of qualitative loop analysis. First, it is possi-
ble to determine the stability properties of a complex community knowing nothing 
about the magnitude of the many parameters. All we have to know is their signs, a 
property which is often obvious from the type of interaction; e.g., predation (+ −), 
competition (− −), commensalism (+ 0), etc. Secondly, the analysis may identify 
which of the parameters needs to be measured in order to resolve ambiguous results 
at any particular level of organization.

Let us now look at a slightly more complicated community composed of three 
competing species (Figure 6.4). Feedback at level 1 will equal the sum of the three 
self-loops [equation (6.1)]

F S S S1 = − + +( )aa bb cc
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and the system is stable at this level of organization. At level 2 we now have two 
conjunct loops linking A to B and B to C, and three disjunct loops made up of the 
self-loops A and B, B and C, and C and A [equation (6.2)]. Hence,

F C C C C S S S S S2 = − − + − − − − − − − − − −( )( ) ( )( ) ( )( ) ( )( ) (ab ba bc cb aa bb bb cc ccc aa

ab ba bc cb aa bb bb cc cc aa

)( )−
= + − − −

S

C C C C S S S S S S

Once again feedback at level 2 is ambiguous and the system can only be stable 
if the sum of the self-loop products is larger than the sum of the interaction loops; 
that is

S S S S S S C C C Caa bb bb cc cc aa ab ba cb bc+ + > + .

Because stability cannot be determined at level 2 without information on the 
magnitudes of the parameters, there is really no need to proceed to an analysis of 
feedback at level 3. One of the basic rules of loop analysis is that instability due to 
positive feedback at one level cannot be corrected by negative feedback at a higher 
level of organization. However, in order to illustrate the procedure for level-3 analy-
sis, we will continue. The general equation for feedback at this level is

 
F C C C S C C S S S3 = − +Σ Σ Σij jk ki ij jk kj ii jj kk  (6.3)

(see Note 6.3 for the derivation of the equation). The first expression of this equation 
specifies the sum (Σ) of all the single loops that pass through all three nodes; that is 
single loops involving A, B, and C. As A and C do not interact in this example, there 

Fig. 6.4 A simple community of three self-regulated species competing for resources, where B 
competes with both species but A and C do not compete



are no single loops of length three. The second term is the sum of the products of 
disjunct loops involving a self-loop and a two-species interaction loop. In our exam-
ple we have two of these, (− S

aa
)(C

bc
 C

cb
) and (− S

cc
)(C

ab
 C

ba
). There is no disjunct 

loop involving S
bb

 because species B is a component of both two-species interac-
tions. The third term of the equation is the sum of the products of all combinations 
of three self-loops. In the example there is only one of these, (− S

aa
)(− S

bb
)(− S

cc
). 

Thus, total feedback at level 3 is

F S C C S C C S S S

S C C S C C
3 0= − − − + −

= +
( ) ( )aa bc cb cc ab ba aa bb cc

aa bc cb cc ab bba aa bb cc− S S S

and, once again we see that the result is ambiguous. However, S
aa

 and S
cc

 now con-
tribute to the positive feedback components, while at level 2 they only contributed 
to negative feedback. Hence, the constraints on stability are even more restrictive at 
level 3 because now S

aa
 and S

cc
 must not be too large. This result emphasizes the 

rule that stability will never be increased, and will usually be decreased, by feed-
back at higher levels of organization.

It is interesting to note that the system illustrated in Figure 6.4 can be stable if 
the self-limiting feedback acting on species B is very strong relative to the other 
interactions. This is because the parameter S

bb
 is the only one that contributes solely 

to negative feedback at all three levels of organization. In other words species B 
must be close to its carrying capacity, where intraspecific competition is most 
intense. For this to be possible the effects of the two competitors on this species 
must be correspondingly weak; that is, the parameters C

ab
 and C

cb
 must be small. 

We would probably arrive at the same conclusion intuitively because species B, 
having to deal with two competitors, is under much more pressure to evolve ways 
in which to avoid competition. It could do this by becoming a strong competitor or 
by adopting an opportunistic life style.

We can continue to make the community more complicated by adding more 
competing species, or more interactions between them, and we would find that the 
requirements for stability become more and more restrictive as we make the com-
munity more complex (the student is encouraged to try this). The main result that 
emerges from such exercises is that the interactions between competing species 
must be much weaker than the self-regulating mechanisms if the populations are 
to persist in the community. In other words, as more species enter an ecological 
community they will have to evolve ways in which to reduce or eliminate competi-
tive interactions if the community as a whole is to remain in equilibrium. From the 
other side, we see that competitive interactions are often the driving forces in the 
dynamics of community succession and that a state of relative stability is only 
attained by the climax community. Thus, it is the climax species that have evolved 
ways in which to live with their competitors by reducing their competitive 
interactions.

Let us now turn our attention to communities involving higher trophic levels; 
that is, plant-herbivore and herbivore-carnivore interactions. First consider a simple 
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community composed of a self-regulated prey and a predator that is only limited by 
the abundance of its prey (Figure 6.5).

As there is only one self-loop in this system, the feedback at the first level of 
organization is defined by

F S1 = − pp .

At the second level we have a single conjunct loop, the predator-prey interaction, 
and no disjunct loops, and so the total feedback is

F C C C C2 = − = −( )( ) .pa ap pa ap

Thus, the community is stable provided that there are no long time delays in the 
numerical responses of predator or prey. Now let us complicate this system by add-
ing another predator, which competes for the same prey (Figure 6.6). Feedbacks at 
the first and second levels are

F S

F C C C C C C

C C C

1

2

= −

= − + − + − −

= − −

pp

pa ap pb bp ab ba

pa ap pb

( )( ) ( )( ) ( )( )

CC C Cbp ab ba+

Fig. 6.5 A simple community consisting of a predator A feeding on a self-regulated prey

Fig. 6.6 A simple community composed of two predators, A and B, feeding on a common self-
regulated prey



which means that the community will be stable provided the positive feedback 
between competing predators is weaker than the sum of the interactions with the 
prey. However, even if these conditions are met, we find that the system is 
completely unstable at level 3. Feedback at this level is made up of two loops 
which involve all three species, namely the loop (− C

ab
)(− C

bp
)(C

pa
) and its reverse 

(− C
ap

)(C
pb

)(− C
ba

), both of which are positive, plus a single disjunct loop composed 
of the prey’s self-loop and the competitive interaction between the predators, which 
also turns out to be positive. Hence,

F C C C C C C S C C3 = + +ab bp pa ap pb ba pp ab ba

and the community is unstable whether the conditions for stability at level 2 are met 
or not.

This result is not really surprising because we have a case of two species com-
peting for exactly the same resource, their common prey. In such cases the competi-
tive interactions must be extremely strong and competitive exclusion is the most 
likely result – this is aptly demonstrated by the unstable community of parasitoids 
feeding on a common prey shown in Figure 4.7A. This system becomes much more 
stable, if the two predators limit their own numbers, say by territorial behavior. The 
student is invited to prove this.

There are many examples, however, of prey populations that are fed upon by a 
complex of predators and that seem to persist in a stable natural community. How 
then can we justify such observations with the results of our loop analysis? The first, 
and perhaps most obvious observation, is that different predators often stratify their 
attacks on a common prey in both space and time; that is, they tend to attack their prey 
at different times and in different places so that they do not compete directly with 
each other. When this occurs the competitive interaction is broken and it is easy to 
show that the system is now stable (F

t
 = − S

pp
; F

2
 = − C

pa
 C

ap
 − C

pb
 C

bp
). Another fea-

ture of some predators, particularly invertebrates, is for them to feed on each other as 
well as on their common prey. If one of the predators is more successful at attacking 
its rival, then it can be considered a predator of both other species and the system will 
become much more stable. For instance, if species A (Figure 6.6) is the superpredator, 
then the interaction C

ba
 will be positive and the feedback structure becomes

F S

F C C C C C C

F C C C C C C S C

1

2

3

= −

= − − −

= − −

pp

pa ap pb bp ab ba

pa ab bp pb ba ap pp aab baC

This system will be stable as long as the loop C
pa

 C
ab

 C
bp

 is not too strong. One of 
the interesting facets of this result is that stability can be improved if species B reduces 
its impact on the common prey; for instance by assuming a scavenging life style, in 
which case C

bp
 = 0 and the positive loop in the level 3 feedback is eliminated.
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At this point it is necessary to pause for a moment and consider again the prob-
lem of time delays in our negative feedback structure. As negative feedback loops 
become longer, or involve more and more species, the possibility of delays creep-
ing in becomes more likely. As we know, these delays can cause the system to 
oscillate in an unstable manner around the equilibrium position (see Chapter 2). In 
general, therefore, it is necessary for negative feedback at the higher levels to be 
weaker than that at the lower levels before the system is considered stable. The 
criterion is that

 F F F1 2 3 0+ > .  (6.4)

In the case in question, where species A is a predator on both common prey and 
its rival (see the equations above), then this criterion becomes

S C C S C C C C C C C Cpp pa ap pp pb bp pa ab pb pb ba ap+ + − > 0,

which should hold under almost all imaginable conditions. In the case where spe-
cies B becomes a scavenger, the stability criterion can be shown to be (the student 
is encouraged to do this)

S C C C C Cpp pa ap pb ba ap− > 0

in which case oscillatory instability is possible if the interactions in the long feed-
back loop are too strong. However, the system will be stable if the prey has strong 
self-regulatory effects.

The next plausible evolutionary step in this community is for the super-predator 
to disengage its interaction with the common prey and feed entirely on the other 
predator. This adds another trophic level to the community and produces a much 
more stable system (the student is encouraged to show that F

1
 = − S

pp
, F

2
 = − C

bp
 

C
pb

 − C
ab

 C
ba

, F
3
 = − S

pp
 C

ab
 C

ba
, and F

1
F

2
 + F

3
 > 0).

The above arguments lead to some interesting speculations concerning the evo-
lution of ecological communities. For instance, if we have an unstable community 
consisting of two predators feeding on a common prey, then there are two major 
evolutionary pathways to a stable community: First, the predators can adapt to feed 
at different times or places, or to attack different sizes or species of prey, in which 
case direct competition will be minimized or eliminated. Second, one of the preda-
tors can adapt to feed on its rival as well as on the common prey. This community 
can become even more stable if the inferior predator also adapts to reduce its impact 
on the prey by assuming a scavenging or parasitic life style. The most stable three-
species community would be created if the superior predator adapted to feed upon 
the other predator alone.

Because stability is a necessary criterion for the persistence of an ecological com-
munity, then the requirements for stability can be viewed as selective forces, which 



lead to the evolution of specialized behavior, which in turn modify the interspecies 
interactions to create a stable system. This process can be viewed as an evolutionary 
feedback loop, which operates in the following way: Given an unstable community, 
then one or more species will be driven toward extinction. This puts selective pres-
sure on them to modify their interactions with the other members of the community, 
and these adaptations change the feedback structure and the stability properties of 
the system. Those species that are successful in adapting will, of course, retain their 
place in the community while the unsuccessful will disappear. The communities that 
we observe in nature are the outcome of this evolutionary game and, therefore, will 
usually be composed of a mixture of co-evolved species, which have “learned” to 
live with each other in relative harmony.

If we accept the proposition that stable communities arise as a result of selective 
forces molding the genetic properties of individual species to produce stable feed-
back loops (self-limiting and trophic interactions) and to weaken or break unstable 
ones (competitive interactions), then we can argue that complex communities can 
only be formed as a result of this co-evolutionary process. In other words, complex 
communities can only evolve if each component species has the evolutionary time 
to adapt to all the species with which it interacts. However, because the interspecific 
interactions are also affected by the physical environment (e.g., temperature, precipi-
tation, soil structure, and nutrients, etc.), it is difficult to see how this co-evolutionary 
process can proceed in a changeable physical setting: How can a species adapt 
to interactions that are constantly changing? It seems, therefore, that complex 
communities will only be able to evolve in rather constant physical environments 
(see also Note 6.4). In very variable physical environments there will be little time 
available for interspecific adjustments to evolve, and we would expect to find much 
simpler ecological communities. This argument leads us to the general proposition 
that environmental stability permits the evolution of complex communities. There 
is an important lesson in this conclusion which man is slowly learning from experi-
ence. If we expose these complex communities to more variable conditions, such 
as human agricultural practices, then we can upset the delicately co-evolved structure 
and possibly create an unstable system. From this perspective, complex systems 
seem to be much more fragile than simple ones, or they are much less resilient to 
changes imposed from outside (see Note 3.9).

6.2.1. Predation as a Stabilizing Influence

The question of predators acting as a stabilizing influence on otherwise unstable 
competitive interactions has intrigued many community ecologists. The question 
arose originally from experimental studies in which predators were excluded from 
a community, and subsequent observations, which revealed that complexity 
decreased as competing species disappeared from the community (see Note 6.5). 
These experiments suggested that predators can indeed stabilize communities and, 
thereby, increase the richness and diversity of ecological systems. Let us examine 
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this question using a simple one predator-two prey system (Figure 6.7). The feed-
back structure is defined by

F S S

F C C C C C C S S

F C C C C C

1

2

3

= − −
= − − −

= +

aa bb

ab ba ap pa bp pb aa bb

ab bp pa ap ppb ba aa bp pb bb ap paC S C C S C C− −

The system is indeterminate at levels 2 and 3. However, the presence of the 
predator has added two extra negative terms to feedback at level 2 (compare this 
with Figure 6.3, which specifies feedback with two competing species). In addition, 
feedback at level 2 can be negative even when the competitive interactions are 
stronger than the competitors’ self-limiting effects, provided that the predatory 
loops are strong; that is,

C C S S C C C Cab ba aa bb ap pa bp pb− < + .

We would expect this condition to hold in most cases where the predator is fairly 
efficient or the prey fairly vulnerable to attack. However, the constraints at level 3 
are much more restrictive. Here the only interactions that do not appear in the nega-
tive terms are competitive, and the only ones that do not appear in the positive side 
are self-loops. Therefore, stability at level 3 seems unlikely when the competitive 
interactions are stronger than the self-regulatory effects. We can demonstrate this 
by assuming that the predator feeds equally on both prey species so that C

ap
 = C

bp
 

= C
.p
 and C

pa
 = C

pb
 = C

p.
, and then factor out the predatory interactions to give

F C C C C S S3 = + − −.p p. ab ba aa bb( ).

Fig. 6.7 A simple community consisting of a general predator, P, feeding on two competing prey 
species. A and B



We can see that negative feedback only dominates when the sum of the self-loops 
is greater than the sum of the competitive interactions (i.e., S

aa
 + S

bb
 > C

ab
 + C

ba
).

So far our analysis suggests that general predators cannot stabilize competitive 
interactions that are themselves unstable. How then can we rationalize the experi-
mental evidence, which support the opposite contention? One possible explanation 
is that the predator maintains the prey at such low densities that competition 
between them is for all intents and purposes eliminated. This may occur if the 
predator is extremely efficient, or the prey very vulnerable, and if the intensity of 
competition between the prey is directly related to their densities (i.e., the case 
illustrated by Figure 4.9B). In this case, competition will become weaker and 
weaker as the equilibrium prey densities decline under predation, and we may find 
a stable community with C

ab
 + C

ba
 < S

aa
 + S

bb
. However, if the predator is removed, 

then the prey populations will grow and the increasing competition may create the 
unstable situation C

ab
 + C

ba
 > S

aa
 + S

bb
.

Another plausible explanation involves the tendency for some predators to switch 
their feeding preferences to the more abundant prey species (see Chapter 4). When 
this happens their interaction with the scarce prey species weakens and the negative 
feedback at level 3 will increase, creating a more stable community. For example, 
suppose that prey B (Figure 6.7) is the most abundant species at a particular time and 
that the predator concentrates its feeding on this population. The interactions between 
the predator and the scarce species will become very weak and this will cause both 
positive terms of level-3 feedback to decrease while only one negative term decreases. 
In particular, we can see that when C

ap
 = C

pa
 = 0, then F

3
 = − S

aa
 C

bp
 C

pb
 and the com-

munity is stable. We must conclude, therefore, that predators can indeed stabilize 
competing communities, which would otherwise be unstable, if they hold the density 
of their prey populations to levels where interspecific competition is relatively weak, 
or if they preferentially crop the more abundant species. In this way, predation may 
increase the diversity of ecological communities and permit greater complexity.

We can, of course, continue to ask questions concerning the stability of real or 
imagined communities of varying degrees of complexity. However, knowing the 
rules of loop analysis, the student can pursue such interesting games by himself 
(some examples of specific communities are provided for the student in the exercise 
section of this chapter). In general, however, we will usually find that the rules of 
two-species interactions hold in more complex associations, and that competitive 
and cooperative interactions tend to destabilize communities while trophic interac-
tions tend to stabilize them.

6.3. Community Dynamics

Although ecological communities may evolve toward stable structures, given enough 
time, this process can be disrupted by catastrophic environmental forces (fires, vol-
canic eruptions, tornados, etc.) as well as by the activities of man (timber and animal 
harvesting, clearing agricultural lands, pollution, etc.). Following such catastrophic 
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events, the disturbed area is usually invaded by pioneer plant species, the opportunists 
with their strong dispersal abilities or other adaptations, which take advantage of 
changing environments. For example, a proportion of the cones of lodgepole pine 
only open to release their seeds when subjected to intense heat, giving this species an 
advantage in re-colonizing areas denuded of life by forest fires. Pioneer plants and 
their associated animal fauna are usually the first communities to appear on disturbed 
sites. However, as we noted in Chapter 4, these species often create conditions that 
are unfavorable to their own reproduction and survival; that is, they form dense stands 
under which their offspring cannot survive because they are adapted to growing on 
open sites and, thus, are intolerant of shaded conditions. In time other shade-tolerant 
plants become established in the understory and will eventually replace the pioneer 
species. This succession of changing plant life is accompanied by a succession of 
animal species adapted to feeding on the different flora, and by a changing complex 
of predaceous species. Hence, we will observe a continually evolving community 
which, given sufficient time in an undisturbed state, will eventually stabilize as a cli-
max community. This evolutionary climax association will usually be composed of 
shade-tolerant plants because only they can reproduce beneath their own canopies, 
and so individual plants that die tend to be replaced by their own kind.

In any given area, the climax plant community will be composed of species that 
are well adapted to the physiography (soil and topography) and climate of that 
region. These species are able to outcompete their less well-adapted rivals and so 
they and their animal associates eventually dominate the area. For this reason, cli-
max communities will usually be separated from different neighboring communi-
ties by rather distinct boundaries, which will usually fall along topographic, edaphic 
(soil), and/or climatic discontinuities. However, there will usually be some overlap 
at the boundaries because environmental conditions are not too well defined and 
may become favorable for one group of species at one point in time or space and 
unfavorable at others. At the boundary, therefore, we often find transitional com-
munities composed of species from both neighboring communities as well as others 
peculiar to the transition zone. For example, ponderosa pine outcompetes Jeffrey 
pine on basaltic soils while the reverse is true on serpentine soils, but at the bound-
ary of these two soil types both species coexist (Note 6.6). Climax communities, 
therefore, form distinctive patterns in space and, superimposed on this, are the suc-
cessional communities, which create a pattern that changes in time.

In regions where environmental disturbances occur at relatively frequent inter-
vals, succession is continually disrupted and we may find pioneer communities 
succeeding each other. Thus, repeated fires in the Rocky Mountains encouraged the 
regeneration of lodgepole pine forests over vast areas of land. Nowadays, with 
modern fire control technology, many of these stands are being slowly converted to 
more shade-tolerant communities composed of Douglas-fir, true firs, and spruce. 
This succession is being hastened by the mountain pine bark beetle, which thrives 
in the older lodgepole pine stands and has devastated extensive areas of lodgepole 
pine forest in recent years (see Note 6.7).

Obviously, herbivores play a role in plant succession and the dynamics of the com-
munities in which they live. We have seen that bark beetles remove mature and over-
mature pines a long time before they would normally die of old age or disease. Thus, 



the beetle, acting as nature’s harvester, hastens the succession towards the climax 
association. This interaction becomes even more intriguing when we observe that the 
beetle usually removes the pines close to the time when their growth rates begin to 
decline (Note 6.7), or shortly after the stand has reached maximum productivity. 
Similar observations with other forest insects, notably the spruce budworm (see 
Chapter 5), have led to the proposition that herbivores actually regulate plant produc-
tivity close to its maximum for a particular site (Note 6.8). In this way, of course, they 
also tend to maximize their own productivity. Herbivores achieve this by feeding upon 
old, decadent, and sick plants, which creates more space for healthy, young competi-
tors, which in turn increases plant growth rates as well as the productivity of the entire 
community. Acceptance of this hypothesis leads to the further proposition that com-
munity interaction networks have evolved so as to maximize productivity, or the rate 
of accumulation of biomass, rather than to maximize the standing crop (i.e., the total 
biomass). Let us examine this proposition by constructing the feedback system shown 
in Figure 6.8. Here we have divided the plant subsystem into two components, total 
biomass and productivity. As productivity must have a maximum we allow it to be 
self-limited. We have further assumed, in accordance with our hypothesis, that herbiv-
ore biomass is inversely affected by plant productivity; that is, herbivore populations 
increase when plant productivity declines. Performing a loop analysis we obtain
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Hence the system is stable, although oscillatory instability is possible if the 
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 suppresses herbivore populations (strong C
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 effect), as seems to be the case with 

Fig. 6.8 A system composed of an herbivore, H, feeding on plants that have been split into the 
standing crop, C, and productivity, P, where productivity has a negative effect on the herbivore
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the bark beetles and the spruce budworm. Thus, we might expect these species to 
exhibit cyclic growth and collapse patterns. Even though outbreaks of these spe-
cies do occur, resulting in severe short-term losses to the standing crop, we see, 
however, that the productivity of the community is maximized over the long 
run.

We can also argue that the herbivores recycle nutrients from the sick and unpro-
ductive components of the community to the more productive, healthy individuals. 
For instance, the defoliation of forest trees causes increased litter accumulation, and 
the feces and decaying bodies of the herbivores release nutrients into the soil. Many 
herbivorous species, particularly insects, have much shorter generation spans than 
their plant hosts and, therefore, they increase the rate of nutrient recycling or, if you 
prefer, the turnover rate. If we incorporate the nutrient component in our feedback 
diagram we obtain an even more intriguing ecosystem (Figure 6.9). Loop analysis 
of this system gives us the feedback structure
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which has negative loops at all levels of organization, except the loop C
hn

 C
np

 C
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ch
 at level 4. It is this loop that is so intriguing because it is composed of four posi-

tive interactions, H N P C H+ + + +⎯ →⎯ ⎯ →⎯ ⎯ →⎯ ⎯ →⎯ ,  which operate as a mutually 
beneficial positive feedback loop. In other words, the herbivore and plant act 
together as a mutualistic or symbiotic system at the fourth level of organization. 
Should this loop dominate the feedback at level 4, then the system will exhibit 

Fig. 6.9 An ecosystem similar to that in Figure 6.8 except that the herbivore increases the nutrient 
pool, N, which in turn acts to increase plant productivity



unstable self-enhancing growth; that is, plant productivity and biomass, as well as 
the herbivore population, will continually increase until negative feedback re-exerts 
dominance, as it must do eventually because there are limits to the nutrient pool and 
to plant productivity. This result is very important because it implies that predator–
prey interactions may have mutualistic effects at the community level, actually 
improving the conditions for its prey rather than making them less favorable as we 
supposed until now. In addition, this result forces us to re-examine our thinking 
about pest species which may, in fact, be helping rather than hindering our efforts 
to maximize plant productivity, at least on a long-term basis (see also Note 6.8).

Of course, we can extend the above arguments to carnivorous species preying on 
the herbivores with similar results. However, if we add a carnivore to the system 
depicted in Figure 6.9 we will observe an even stronger mutually enhancing feed-
back loop at level 5 (the student is encouraged to demonstrate this by allowing the 
carnivore to contribute to the nutrient pool).

We have made but a brief excursion into the fascinating subject of community 
ecology and have skirted many interesting topics: for instance, the evaluation of 
community diversity, island biogeography and the problem of invasion and extinc-
tion of species, and the application of loop analysis and complementary feedback 
to evaluating evolution within ecological communities (see Notes 6.1 and 6.2 for 
further readings in these areas). However, we have tried to explore those areas 
where the evaluation of single-species or two-species models may lead to danger-
ous conclusions when applied to ecological communities, we have seen that most 
of the results we obtained with one- and two-species populations hold at the com-
munity level, but that communities possess some additional properties of their own. 
These, and the possibility of other undiscovered properties, should be on our minds 
as we play the role of manager in ecological settings.

6.4. Chapter Summary

In this chapter we have taken a brief look at the structure, stability and dynamics of 
ecological communities. The main points are summarized below:

1.  Ecological communities are formed by a web of interacting populations, food 
webs or food chains, with plants forming the base production level and herbiv-
ores and carnivores forming a trophic pyramid above. The length of food chains 
is limited by the requirements of conservation and the loss of energy in transfer-
ring biomass between trophic levels.

2.  Community network models were constructed by considering the density (or 
biomass) of each species as a state variable with feedback between members of 
the same species represented by self-loops and between different species by 
competitive, cooperative, or trophic interaction loops.

3.  The overall feedback structure of a community was defined by the sum of 
the feedback at each level of organization, or by what is called loop analysis; 
i.e., feedback at level 1 is the sum of all self-loops (ΣS

ij
), at level 2 it is the sum of 
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all conjunct two-species interactions (ΣC
ij
C

ji
) minus the sum of disjunct loop 

products involving two species (ΣS
ji
S

jj
), and so on. The general expression for 

feedback at level k is given by

F L m kk
m

m

k

= − +

=
∑ ( ) ( , ),1 1
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where m is the number of loops involved in each feedback term (Note 6.3).
4.  A community is defined as being stable in the vicinity of its equilibrium position 

if feedback at all levels of organization is negative, with the proviso that feed-
back at levels 3 or higher must be weaker than the product of feedback at lower 
levels; e.g.,

F F F1 2 3 0+ > .

When negative feedback at the higher levels is strong, relative to that at lower 
levels, the effect of time delays in the long loops may give rise to oscillatory 
instability.

Loop analysis was used to evaluate the stability properties of ecological com-
munities, from which the following generalizations emerged:

5.  Competitive interactions between species create unstable communities unless 
they are dominated by negative feedback between members of the same species 
(self-loops). In addition, as more competing species are added to the community, 
the competitive interactions must become proportionally weaker if community 
stability is to be maintained, because the constraints on stability become more 
restrictive at higher levels of organization; i.e., stability decreases as more spe-
cies are added unless the competitive interactions weaken through evolutionary 
adjustments.

6.  Trophic (predator–prey) interactions are inherently stabilizing and may, under 
certain conditions, stabilize otherwise unstable interactions between competing 
species; i.e., if the predators are very efficient and the intensity of competition 
between their prey is directly related to their density, or if the predators prefer-
entially crop the more abundant prey species. From this we concluded that pre-
dation can increase the diversity and stability of ecological communities.

7.  Given enough time in a consistent environment, species can evolve behavioral 
adaptations that modify their competitive, cooperative, and trophic interactions 
and, thereby, a stable community may be created. Hence, complex and diverse 
communities have a greater probability of evolving in benign and stable 
environments.

8.  Community stability is frequently disrupted by severe environmental distur-
bances and this is usually followed by a series of successional communities that 
slowly evolve towards a climax association. However, continuous disturbances 
may prevent the attainment of this climax because the community is kept in its 
early successional stages. The climax community is adapted to particular climatic 



and edaphic conditions so that we often find a spatial mosaic of different com-
munities separated by distinct topographic and edaphic boundaries, and each of 
these communities may be in different stages of succession.

9.  Herbivores play an important role in community succession by removing certain 
individuals and species, and thereby, hastening the rate of succession. In addi-
tion, herbivores often feed on the unproductive, or unhealthy, members of the 
community. In this way they act to recycle nutrients to the more productive 
components, and to increase the overall productivity and vigor of the commu-
nity. From this point of view, trophic interactions can be considered mutualistic 
at the community level as both prey and predator benefit from the association.

Exercises

6.1.  In a forest community, fungal pathogens, which slowly debilitate and eventu-
ally kill trees, are spread more readily in dense stands However, these fungus-
infected trees are usually attacked by bark beetles before they die from the 
fungus infection. The beetles kill these weak trees and then breed within them. 
Assuming that stand density is self-limiting, draw the feedback diagram for 
this community and evaluate its stability.

6.2.  Some bark beetles have evolved a mechanism for transporting fungi and inoc-
ulating them into the tree as they attack it. These fungi then aid the beetle in 
killing the tree. Has this evolutionary trend contributed to the stability of the 
fungus–beetle–tree interaction, and if not, what conditions are necessary for a 
stable interaction?

In the case of the Dutch elm disease, beetles inoculate fungi into trees during 
maturation feeding; the fungi then cause blockage of the tree’s food transport 
system and severely weaken its defenses so that the beetles can easily gain 
entrance and kill the tree. In other words, we have a very strong mutualistic 
interaction between beetle and fungus. In the light of your previous answer, 
what can you conclude about the stability of this system?

6.3.  Hares feed on vegetation and are themselves fed upon by lynx. However, the 
intensity of lynx predation is reduced by heavy vegetation because the hares 
are harder to find. Assuming that vegetation is self-limiting, evaluate the stability 
of this community. What conditions are necessary for oscillatory instability, 
which may give rise to observed population cycles? What evolutionary trends 
would stabilize this system?

6.4.  Grass, a self-limited resource, forms the food supply for an antelope herd. A 
plentiful supply of grass increases the health and vigor of the herd and its 
resistance to a pathogenic microorganism. When the general health of the herd 
is low, epidemics of the pathogen kill many weakened antelope. Naturally, 
healthy herds produce more surviving young and, thereby, increase the size of 
the herd. Evaluate the stability of this system.
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Notes

6.1.  The question of complexity versus stability of mathematical models of eco-
logical systems has been addressed exhaustively by Robert May in his book 
Stability and Complexity in Model Ecosystems, published by Princeton 
University Press, New Jersey, 1974. The overriding conclusion of most math-
ematical exercises is that complex systems are never more stable, and are usu-
ally less stable, than simple systems. However, when more realistic biological 
features are incorporated into the models, the contrary becomes true again, 
as exemplified, for instance, in the paper by M. Rejmánek, P. Kindlmann and 
J. Lepš: Increase of stability with connectance in model competition communities, 
published in the J. Theor. Biol. (vol. 101, pp. 649–656, 1983).

6.2.  Evaluating the qualitative stability of complex systems is briefly covered in 
May’s book (Note 6.1). However, Richard Levins provides a much more com-
plete treatment in his contribution to the book Ecology and Evolution of 
Communities, which was edited by M. L. Cody and J. M. Diamond and pub-
lished by The Belknap Press of Harvard University, Cambridge, Massachusetts, 
in 1975. Levin’s contribution is suggested for those who wish to explore the 
mathematical details of loop analysis. Levins’ paper in the Annals of the New 
York Academy of Sciences (vol. 231, p. 123, 1974) also discusses loop analysis 
and its applications in biology.

6.3.  The general expression of feedback at the kth level of organization is

F L m kk
m= − +Σ( ) ( , )1 1

where m is the number of loops involved in the computation of each feedback 
term. The first expression in this equation, (− 1)m − 1, adjusts the sign so that it 
is always negative when the loops in a particular product are all negative. 
Thus, when k = 1, feedback at level 1 is

F S S1
1 11= − =−Σ Σ( ) ij ii 

because only one loop is involved in each addition. However, at level 2 we 
have single loops involving two species, C

ij
 C

ji
, and combinations of two self-

loops. Thus,
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At the third level we will have single loops involving three species whose 
signs are positive; disjunct loops composed of a self-loop and a two-species 
connection, whose sign is negative; and disjunct loops composed of three self-
loops, whose sign is (− 1)3 − 1 = +1.
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and so on for higher levels. For further details the reader is referred to Levins’ 
writings mentioned in Note 6.2.

6.4.  The conclusion that environmental stability permits communities to become 
more diverse or complex has a basis in information theory. The rate of infor-
mation flow through an information system is reduced if the channel is noisy 
(has a lot of static) because the signals cannot be so finely divided. For 
instance, try communicating very rapidly over the airwaves when a lot of 
static is present. Similarly, in a noisy environment (i.e., a variable one) evolu-
tion cannot proceed at as fast a pace as in a quiet (consistent) one and, there-
fore, fewer species will be present. The fundamental theorem of information 
theory is expressed by

V A B n= × +log ( / ),e 1

where V is the rate of evolution (analogous to information flow) which is 
assumed proportional to the number of species in the community, n is a meas-
ure of environmental variation (noise), and A and B are constants, perhaps 
related to the mutation rate and the diversity of the base resources, respec-
tively. John MacArthur, in his contribution to the book Ecology and Evolution 
of Communities (see Note 6.2 for the complete reference), obtained remarka-
bly good fits to this simple model with data from bird, mammal, and gastropod 
diversity gradients along latitudinal transects, where the measure of environ-
mental variation (noise) was the difference in mean winter–summer 
temperatures.

6.5.  One of the most often cited experiments on predator removal is that published 
by R. T. Paine in 1966 in the American Naturalist (vol. 100, p. 65). Paine 
removed the predatory starfish, Pinaster, from an area of seashore and found 
that the community diminished from 15 to 8 species within 2 years. Support 
for this view can also be found in the works of D. J. Hall, W. E. Cooper, and 
E. E. Werner in Limnology and Oceanography (vol. 15, p. 839, 1970) and in 
J. H. Connell’s contribution to the book Dynamics of Populations, edited by 
P. J. den Boer and G. R. Gradwell, and published by the Centre for Agricultural 
Publishing and Documentation (Wageningen, Netherlands, 1971). Connell 
further summarizes this empirical evidence for the role of predation in com-
munity diversity in his contribution to the book Ecology and Evolution of 
Communities (see Note 6.2 for the reference).

There have also been a number of mathematical analyses of the effect of preda-
tion on the stability and diversity of ecological communities. These are summa-
rized by R. M. May in his book Stability and Complexity in Model Ecosystems 
(Note 6.1), and by M. P. Hassell in his book Dynamics of Arthropod Predator–
Prey Systems (Princeton University Press, New Jersey, 1978).
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6.6.  The competitive interaction between ponderosa and Jeffrey pines, and their 
hybridization in transitional areas, was described by J. R. Haller in University 
of California Publications in Botany (vol. 34, p. 123). He showed that the two 
species coexist in the transitional zone because both are tolerant of the physi-
cal environment, that hybrids cannot compete with their parents, and that the 
intermixed serpentine and basaltic soils provide each species with competitive 
advantages.

6.7.  A book Theory and Practice of Mountain Pine Beetle Management in 
Lodgepole Pine Forests, edited by A. A. Berryman, G. D. Amman, R. W. 
Stark, and D. L. Kibbee and published by the Forest, Wildlife, and Range 
Experiment Station of the University of Idaho, Moscow (1978), provides 
detailed information on this forest–insect interaction. A contribution by R. L. 
Mahoney in this book shows that outbreaks of the beetle tend to start in stands 
where the growth rate is in decline.

6.8.  The proposition that herbivorous insects act as regulators of forest productivity 
and nutrient cycling and, thereby, perform a vital function in the dynamics of 
ecological communities, was examined by W. J. Mattson and N. D. Addy in 
Science (vol. 190, p. 515, 1975). They concluded that insect grazers function 
like feedback regulators of primary productivity, ensuring consistent and opti-
mal output of plant production over the long term on a given site. This conclu-
sion was based on the observation that the activity of herbivores was often 
inversely related to the vigor and productivity of the plant community. As a 
result of this interaction, they suggested that nutrients are cycled from the 
nonproductive components of the system to the more vigorous, productive 
elements and, because of this, insect–plant relationships may be considered 
mutualistic in the long-term sense. This line of reasoning was also taken by 
R. M. Peterman in his contribution to the book mentioned in Note 6.7. He 
argued that mountain pine beetle populations and forest fires usually destroyed 
lodgepole pine stands at a time, which maximizes their long-term fitness and 
productivity.



Epilogue
The Human Dilemma

Several million years ago a group of apelike animals emerged from the East 
African savanna with new attributes to test in the arena of evolution - a grasping 
tool-wielding hand, and the glimmerings of intelligence and cooperative social 
organization. So powerful were these new adaptations that the species we know as 
Homo sapiens spread rapidly from its African genesis to all corners of the planet 
Earth. No other single species has been so successful in the evolutionary struggle 
for dominance, even the fierce Pleistocene predators yielding in the face of cooperative 
intelligence and hand-wielded weapons. Today Homo sapiens stands at the pinnacle 
of his power - proud, indomitable, and confident in his ability to meet the next 
evolutionary challenge.

And yet a threat looms on his horizon.
Not a threat from predators or competitors, but from man’s own cooperative 

abilities to overwhelm the negative feedback (diseases, predators, competitors, food 
shortage, etc.) acting on his populations. As we know, the dominance of cooperative 
interactions creates an unstable positive feedback loop (Chapter 3), an instability, 
which is reflected in the alarming growth of the human population of more than six 
billion individuals. However, we also know that negative feedback in the form of 
competitive interactions must eventually dominate a population inhabiting a finite 
environment. It is the threat of fulfilling the Malthusian prophecy, which looms 
over the future of mankind.

We cannot refute the basic Malthusian premise that the earth and its resources 
are finite, or the resulting deduction that the human population cannot grow indefi-
nitely. There must be some equilibrium density, or carrying capacity for the planet, 
which will determine the population that can be sustainable indefinitely by the 
earth’s resources. However, although Homo may have the intellect to arrive at this 
conclusion, he has yet to calculate a value for this carrying capacity. In this respect 
he is no better off than other less intelligent species, which are subjected to 
competitive struggle and subsistence economy whenever their populations approach 
or exceed carrying capacity.

Because there is no firm estimate of the human carrying capacity, it is impossible 
to predict the future behavior of the population with any degree of accuracy. 
Lacking facts, predictions have come from the mouths of prophets and soothsayers. 
The pessimistic believe that we have already surpassed this unknown equilibrium 
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density and that we are doomed to a future of misery, vice, and destruction as the 
price of overshoot and overexploitation. Even the more optimistic realize that 
the population explosion has caused severe impacts on its environment, and that the 
time delays introduced into the negative feedback loops may create cycles of 
growth and collapse, prosperity and misery. On the other hand, the most optimistic 
believe that human intelligence, ingenuity, and cooperation can continue to raise 
the carrying capacity of the globe and correct the negative impacts on the environ-
ment before they are fed back to future generations. Indeed, there is some precedent 
for this optimistic view because the dismal prophecies of Thomas Malthus, almost 
two hundred years ago, failed to foresee the unprecedented advances in agricultural 
technology, which have greatly increased the carrying capacity of the earth. There 
is a danger, however, in relying on technology to continue to expand the carrying 
capacity ahead of the growing population. Agricultural technology is based, in 
large part, on a finite and dwindling supply of energy - the Malthusian premise 
remains. Moreover, even if technology can harness an infinite energy source, such 
as the sun, negative feedback must eventually dominate as more and more agricul-
tural land is used for living space or for solar conversion devices. The question then 
is not whether the human population can continue to grow ad infinitum, but rather 
when and how it will be brought under control, and whether it will suffer the drastic 
consequences of overshooting its carrying capacity.

Aside from the serious problem of the expanding human population, which can 
only be solved by social, cultural, or political adjustments, there remains the ques-
tion of how best to manage our renewable natural resources for the benefit of 
present and future generations. It seems to us that many of our ecological problems 
have roots in our humanitarian philosophies. Early humanitarian concepts, which 
form the cornerstones of Western civilizations, center on the rights of individuals 
to compete with equal opportunity for food, material wealth, and social well-being. 
Although it is difficult to argue with this principle, it has one fundamental flaw. The 
egalitarian ideals were formed at a time when opportunity and resources seemed 
inexhaustible and the human population was relatively small. Because of this they 
did not adequately consider the rights of unborn generations. Thus, in the name of 
human rights and equal opportunity we have plundered and squandered the earth’s 
resources without concern for the rights, needs and opportunities of future peoples. 
In this era of exploitation, supplies of fuels and minerals have been severely 
depleted and populations of animals harvested to extinction, or near extinction. 
This has led us into the ecological crisis of today, and the confrontation between 
exploiter and conservationist.

Forged out of the ecological crisis a new ethic has emerged which recognizes 
the rights of generations yet unborn. This is the ethic of conservation, the imperative 
of the predator to leave resources to nourish its offspring (Chapter 4). Perhaps it is 
incorrect to claim this as a new ethic for surely early human populations conserved 
their food supply in a similar way to other predators. Certainly it was not the 
American Indian who overexploited the bison herds and salmon runs! But then 
again early man was not the efficient hunter he is today, and conservation was not 
such a critical imperative.
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The ethic of conservation, recognizing the rights of future generations and con-
serving resources for their use, has become the guiding philosophy of the manager 
of natural renewable resources. From this philosophy has sprung the concept of sus-
tainable yield, or setting harvest policies that permit utilization of the resources in 
perpetuity. Although sustainable yield is not a new idea - having been practiced by 
central European foresters for centuries - the maintenance of an effective sustainable 
yield policy is no simple matter, for the manager is faced with a complex array of 
biological, social, and economic problems. The manager needs to have a clear 
understanding of the interaction structure of the population system he is managing 
and the consequences of his decisions. For instance, he has to consider the conse-
quences of time delays, not only within the population system itself, but also within 
the management cycle, for it takes time to implement management policies and by 
then things may have changed. He should be aware that time delays can give rise to 
population cycles, and that even if cycles are not apparent they can be created if the 
environment is altered by management practices (Chapter 2). The manager must be 
wary of thresholds in the system created by cooperative interactions, particularly 
extinction thresholds, from which there is no return (Chapters 3 and 4). Harvesting 
policies should be formulated to minimize the risks of crossing these unstable equi-
libria and precipitating undesirable population behavior. On the other hand, thresh-
olds can sometimes be used to advantage, as in the biological control of pest species. 
The manager also needs to have a feeling for the larger ecosystem, of which the 
population he is managing is part, for policies implemented on one species and at 
one place are likely to influence other species in different places (Chapters 5 and 6). 
As if these ecological problems are not enough, the resource manager is often con-
fronted with even more difficult economic and social problems, which may conflict 
with his conservative ethics. Here we reach the crux of the management dilemma.

The success of a sustainable yield policy requires that the supply of a renewable 
resource to its human consumer be regulated in such a manner that it is maintained 
indefinitely into the future. Although this supply rate can be raised or lowered by 
cultural practices that alter the favorability of the environment for the species being 
managed (Chapter 3), it must be regulated independently of demands by the consumer 
if the sustainable yield policy is to be successful. Society, however, views the prob-
lem from the side of the consumer rather than the resource. Thus, socialists demand 
more resources to raise the standard of living of the workers, while capitalists 
demand more to increase profits for their shareholders. If the resource manager 
regulates the supply, S, and social pressures create the demand for resources by 
each individual in the population, d, then the management dilemma is captured in 
the supply/demand ratio

S / dN,

where N is the size of the consumer population, and dN is the total demand for 
resources made by the population. As long as the supply of resources from a 
sustainable yield policy exceeds the total demand of consumers (i.e., S/dN > 1) the 
manager only has to worry about his biological problems. However, as soon as 
the demand exceeds the supply (i.e., S/dN < 1) he finds himself in a very difficult 
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position: He can either abandon his sustainable yield policy and increase the supply, 
compromising his responsibilities to the future and risking extinction of the 
resource, or he can insist on maintaining a constant supply and incur the wrath of 
his fellows whether they be socialists or capitalists. Because the resource manager 
is often a public servant and, therefore, subject to political pressures, it may be 
impossible for him to resist the demands from both left and right wing political 
fractions, and he may be forced to abandon his sustainable yield policy, regardless 
of his ethical standards. The manager, it seems, is often caught “between the devil 
and the deep blue sea.”

It appears that we always have to return to the central ethical problem: Do future 
unborn generations have a right to a share of the earth’s resources? Even the most 
adamant conservationist is burdened with the same question whenever he drives his 
automobile to the supermarket and, thereby, burns the fuel which can be used to 
grow food for his descendants. If we choose to accept this moral standard, then 
conservation and sustainable yield become the maxima of natural resource manage-
ment. Under these maxima, an ecological solution is only possible by reducing the 
consumer demand to meet the sustainable yield supply. This can be done either by 
reducing the demand of each individual, d, which is the same as lowering the standard 
of living, or by stabilizing or reducing the population size, N, so that

dN = S.

Because population size is not easily or quickly changed, the only viable alterna-
tive seems to be through the standard of living. The usual economic solution to this 
problem is to allow the price of the resource to rise with the demand for it. In other 
words, as the resource becomes scarce, relative to the consumer demand for it, the 
price rises so that more individuals are forced out of the market. In this way the 
population of consumers, N, is reduced to those who can afford to pay the price. 
The economic equilibrium then becomes

dN / p = S,

or

p = dN / S,

where p is a pricing coefficient. The economic solution may be socially acceptable 
for nonessential commodities such as automobiles and washing machines. 
However, most renewable resources are used as food, clothing, or housing, and so 
this solution violates our humanitarian standards because the poor are deprived of 
the necessities of life.

It seems to us that many of our present-day ecological problems are rooted in 
economic attitudes. For example, many economists reject the concept of sustaina-
ble yield, arguing that such policies neglect the industrial costs of harvesting and 
marketing the resource. Rather than maximizing the sustainable yield, they say, the 
manager should attempt to maximize the net income derived from the resource. 
Unfortunately, this policy can lead, under certain conditions, to the resource being 
harvested to extinction (see for example C. W. Clark, Science, vol. 181, p. 630, 
1973). Once again we come up against the ethical question of descendant rights. 
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Contemporary economic theory has evolved, to a large extent, from the ideas of 
David Ricardo, a vigorous proponent of economic growth. Ranged against him, in 
what was one of the friendliest controversies in the history of intellectual pursuit, 
was another economist and population theorist, Thomas Malthus. That Ricardo 
emerged from this debate as the overwhelming victor is one of the ironies of our 
times but not surprising, knowing man’s innate optimism and greed. John Maynard 
Keynes laments in his biography of Malthus:

One cannot rise from a perusal of this correspondence [between Ricardo and Malthus] 
without a feeling that the almost total obliteration of Malthus’s line of approach and the 
complete domination of Ricardo’s for a period of a hundred years has been a disaster to the 
progress of economics. … If only Malthus, instead of Ricardo, had been the parent stem 
from which nineteenth-century economics proceeded, what a much wiser and richer place 
the world would be today!

(J. M. Keynes, Essays in Biography, New Edition, London, 1951)

One can hardly resist from adding to Keynes’s lament that, if only Malthus’s 
basic concepts of population, if not his methods, had played a central role in political–
economic thinking and population planning, what a much more pleasant and 
bountiful planet we could bequeath to our (limited) offspring.
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Answers to Exercises

Chapter 2

2.1. (A) R = 0.08; (B) 108, 117, 126, 136, 147; (C) It assumes growth is unlimited; 
(D) As R = 0, it will remain at the same density.

2.2. (A) Negative feedback; (B) R = 1.5; (C) R
m
 = R/(1 − N/K) = 1.5/(1 − 200/2000) 

= 1.67; (D) s = R
m
/K = 0.00083; (E) 500, 1126, 1948, 2033, 1977, 2015, 1990, 

2007, 1995, 2003; (F) Damped-stable approach to equilibrium because y/x = 
10/15 = 0.6 and R

m
T = 1.5.

2.3. (A) 990, 998, 1000, 1000, etc.; y = −2, y/x = − 0.2; R
m
T − 1 = − 0.2, asymptotic 

stability; (B) 9990, 9998, 10000, 10000, etc.; y/x = − 0.2, R
m
T − 1 = −0.2, 

asymptotic stability; (C) Similar result: (D) 990, 1008, 994, 1005, 996, 1003; 
y/x = 0.8, R

m
T − 1 = 0.8, damped stable oscillations; (E) 990, 1018, 967, 1056, 

890, 1164; y/x = 1.8, R
m
T − 1 = 1.8, unstable; (F) 990, 990, 998, 1006, 1008, 

1003; y/x = 0.8, R
m
T − 1 = 0.6, damped stable oscillations; (G) 990, 990, 990, 

998, 1006, 1014, 1016, 1011; y/x = 1.6, R
m
T − 1 = 1.4, unstable.

Chapter 3

3.1. (A) 17.4, −0.57, 1.0, − 0.48, 0.64, − 0.25, 0.25, − 0.25, 0.2; (B) Damped stable 
oscillations because y/x » 0.6; K » 175, s » 0.01, sK » 1.8; (C) No evidence for 
cooperative interactions; T » 1; no long time delays because environmental 
feedback is minimized by replacing food at the start of each generation.

3.2. (A) 0.6, − 0.69, 3.0, − 0.93, 1.67,3.25, − 0.79, 3.29, − 0.47, 1.31; (B) Unstable 
because y/x » 1.3; K » 250, s » 0.01, sK » 2.5; (C) Seems to be globally stable 
under most conditions because oscillations do not continue to increase in 
amplitude indefinitely. However, there is evidence for an extinction threshold 
at a population density between 10 and 20; (D) Cooperative low-density inter-
actions are evident, T » 1.
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3.3. (A) 2.03, 3.18, 0.05, − 0.38, − 0.78, − 0.26, 1.04; (B) T > 1 because a cyclic 
trajectory is evident. A plot of R on N

t−2
 yields an approximately single-line 

relationship, thus, T » 2.
3.4. (A) The oak environment is more favorable, providing a higher equilibrium 

density, K, and a larger value for sK, hence, the more vigorous oscillations; (B) 
T » 1 because there is little tendency towards population cycles.

3.5. K » 20 in unthinned woods, K » 47 in thinned woods; an appropriate reproduc-
tion plane and equilibrium line can be drawn with stand density as the environ-
mental favorability axis.

3.6. If we start at the beginning of the second cycle (the year 1919) we can find that 
hare numbers, H

0
 » 20, and lynx numbers, L

0
 » 2. In the next year the lynx 

population increased to 5, giving a net reproduction of 3 lynx. We plot this first 
population vector as a horizontal arrow from 2 to 5 lynx opposite a hare density 
of 20. The environmental change vector is then calculated as H

1
 − H

0
 = 38 − 20 

= 18, and plotted as a broken line (Figure A). The next lynx change from 5 to 15 
is plotted from this point, and so on. We can place the equilibrium line approxi-
mately knowing that the lynx population increases to its left and decreases to 
its right (Figure A).

3.7. Because there is no evidence for a drastic permanent change in the favorability 
of the salmon’s environment, we should suspect that the system has a complex 
W-shaped equilibrium line. The salmon population cycles around its upper 
equilibrium level, indicating the action of delayed feedback operating through 
the environment (gene pool?). However, cycles are less evident in the domain 
of the lower equilibrium, suggestive of rapid (non-delayed) density-dependent 

Fig. A
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responses. Thus, the critical density, N
c
, where the population affects the quali-

ties of its environment, probably lies somewhere between the two equilibria.

Chapter 4

4.1. (A) The repressive effect of each individual on the reproduction and survival 
of its cohorts, s, and on the other species, c; (B) (i) A and B coexist; (ii) B 
replaces A; (iii) A or B wins depending on the starting densities. Populations 
coexist when c

a
 < s

a
 and c

b
 < s

b
; (C) A replaces B because R

ma
/R

mb
 = s

a
/s

b
; (D) 

Details of equilibrium and extinction behaviors. You may also obtain negative 
population densities, an unreasonable feature of the linear models.

4.2. See Figure 4.12 (page 113).
4.3. Mobility (finding resources quickly), high maximum rate of increase (advantage 

of numbers), and life in variable or temporary habitats.
4.4. (A) The vulnerability of the prey to attack and the efficiency of the predator in 

converting prey into predator offspring; (B) Equilibrium at A = 500, B = 100; 
damped-stable cycles; for instance, when A

0
 = A* − 100, B

0
 = B* − 40 we get 

the following dynamics: A = 640, 620, 433, 398, 588, 608, 447, 408, 568, 596, 
459, 417; B = 75, 106, 121, 73, 79, 105, 119, 79, 81, 104, 117, 83; (C) A = 286, 
B = 143; unstable cycles of increasing amplitude; for example, when A

0
 = A* − 

4, B
0
 = B* + 7, we obtain A = 267, 272, 308, 316, 269, 238, 290, 360, 317, 207, 

209, 381, 484; B = 145, 132, 136, 152, 158, 130, 118, 140, 171, 157, 76, 97, 
144; (D A = 444, B = 222; stable cycles; for example, when A

0
 = A* − 56, B

0
 = 

B* + 58, we obtain A = 300, 350, 651, 676, 403, 300, 476, 620, 456, 327, 409, 
597, 520; B = 246, 88, 132, 210, 290, 162, 149, 204, 274, 219, 144, 187, 267.

4.5. The predator reproduction plane is similar to that in Figure 4.17C and the 
prey’s is like Figure 4.18A. The interaction will produce stable limit cycles.

4.6. (A) About 178; (B) Prey equilibrium density to about 147; (C) New prey equi-
librium at about 12; (D) At least 52.

Chapter 6

6.1. (See Figure B).

 F
1
 = – S

tt

F
2 
= – C

tb
 C

bt
 – C

tf
 C

ft

 F
3
 = – C

tf
 C

fb
 C

bt

 F
1
F

2
 + F

3
 = S

tt
 C

tb
 C

bt
 + S

tt
 C

tf
 C

ft
 – C

tf
 C

fb
 C

bt
 > 0

 The community is stable and oscillatory instability seems unlikely under most 
conditions.
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6.2. Add another positive interaction C
bf
 for the beetle helping the fungus to the 

community above.

 F
1
 = – S

tt

F
2 
= – C

tb
 C

bt
 – C

tf
 C

ft 
+ C

fb
 C

bf

 F
3
 = – C

tf
 C

fb
 C

bf
 – C

tb
 C

bf
 + Stt C

fb
 C

bf

The community is less stable because positive terms have been added to level-2 
and -3 feedback. The system will be stable as long as feedback between beetle 
and fungus is not too strong. In the case of the Dutch elm disease the commu-
nity is likely to be unstable because the feedback between beetle and fungus is 
very strong. This conclusion is borne out by the facts as the disease has all but 
eliminated American elms from the eastern and central USA and is currently 
sweeping through European elm forests.

6.3. (See Figure C).

 F
1
 = – S

vv

 F
2 
= – C

vh
 C

hv
 – C

h1
 C

1h

 F
3
 = – C

v1
 C

1h
 C

hv
 – S

vv
 C

h1
 C

1h

F
1
F

2
 + F

3
 = S

vv
 C

vh
 C

hv
 – C

v1
 C

1h
 C

hv
 > 0

Factoring out C
hv

 we find that the system will be stable

C
vi
 C

lh
 > S

vv
 C

vh

Fig. B

Fig. C
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Evolutionary trends towards lower vulnerability of hares to predation (decreases 
C

1h
), increased efficiency of lynx finding hares in dense cover (decreases C

v1
), 

increased efficiency of hares in utilizing the vegetation (increases C
vh

), or more 
powerful self-limitation of vegetation will all increase stability.

6.4. (See Figure D).

 F
1
 = – S

gg

 F
2 
= – C

da
 C

ad

 F
3
 = – C

gh
 C

ha
 C

ag
 – S

gg
 C

da
 C

ad

F
1
F

2
 + F

3
 = C

gh
 C

ha
 C

ag
 = oscillatory instability

 G = grass, H = health of the herd, A = size of the herd, D = disease.

Fig. D
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